skip to main content


Title: The Photochemical Reflectance Index (PRI) Captures the Ecohydrologic Sensitivity of a Semiarid Mixed Conifer Forest
Abstract

At the seasonal time scale, daily photochemical reflectance index (PRI) measurements track changes in photoprotective pigment pools as plants respond to seasonally variable environmental conditions. As such, remotely sensed PRI products present opportunities to study seasonal processes in evergreen conifer forests, where complex vegetation dynamics are difficult to capture due to small annual changes in chlorophyll content or leaf structure. Because PRI is tied explicitly to short‐ and long‐term changes in photoprotective pigments that are responsible for regulating stress, we hypothesize that PRI by extension could serve as a proxy for stomatal response to seasonally changing hydroclimate, assuming plant functional responses to stress covary in space and time. To test this, we characterized PRI in a semiarid, montane mixed conifer forest in the Madrean sky islands of Arizona, USA, during the monsoon growing season subject to precipitation pulse dynamics. To determine the sensitivity of PRI to ecohydrologic variability and associated changes in gross primary productivity (GPP), canopy spectral measurements were coupled with eddy covariance CO2flux and sap flow measurements. Seasonally, there was a significant relationship between PRI and sap flow velocity (R2 = 0.56), and multiple linear regression analysis demonstrated a PRI response to dynamic water and energy limitations in this system. We conclude that PRI has potential to serve as a proxy for forest functional response to seasonal ecohydrologic forcing. The coordination between photoprotective pigments and seasonal stomatal regulation demonstrated here could aid characterization of vegetation response to future changes in hydroclimate at increasing spatial scales.

 
more » « less
NSF-PAR ID:
10381792
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
125
Issue:
11
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    The Photochemical Reflectance Index (PRI) provides an optical indicator of photosynthetic light‐use efficiency, photoprotection, and stress in plants. Although PRI can be applied in remote sensing, its interpretation depends on irradiance, which is hard to obtain from satellite or airborne imagery.

    To quantify forest photoprotective responses remotely, we developed a framework for modeling and interpreting PRI‐light responses of individual trees and species using airborne imaging spectrometry coupled with georeferenced forest inventory data from a temperate broad‐leaved forest. We derived an irradiance proxy, used hierarchical modeling to analyze PRI‐light responses, and developed a framework of physiological interpretations of model parameters as facultative and constitutive components of photoprotection.

    Photochemical Reflectance Index declined with illumination, and PRI‐light relationships varied with landscape position and among tree crowns and species. More sun‐exposed foliage had lower intercepts and slopes of the relationship, indicating greater constitutive, but less facultative, photoprotection.

    We show that tree photoprotective strategies can be quantified at multiple scales using airborne hyperspectral data in structurally complex forests. Our findings and approach have important implications for the remote sensing of forest stress by offering a new way to assess functional diversity through dynamic differences in photoprotection and photosynthetic downregulation and providing previsual indicators of forest stress.

     
    more » « less
  2. Information on the intracellular content and functional diversity of phytoplankton pigments can provide valuable insight on the ecophysiological state of primary producers and the flow of energy within aquatic ecosystems. Combined global datasets of analytical flow cytometry (AFC) cell counts and High-Performance Liquid Chromatography (HPLC) pigment concentrations were used to examine vertical and seasonal variability in the ratios of phytoplankton pigments in relation to indices of cellular photoacclimation. Across all open ocean datasets, the weight-to-weight ratio of photoprotective to photosynthetic pigments showed a strong depth dependence that tracked the vertical decline in the relative availability of light. The Bermuda Atlantic Time-series Study (BATS) dataset revealed a general increase in surface values of the relative concentrations of photoprotective carotenoids from the winter-spring phytoplankton communities dominated by low-light acclimated eukaryotic microalgae to the summer and early autumn communities dominated by high-light acclimated picocyanobacteria. InProchlorococcus-dominated waters, the vertical decline in the relative contribution of photoprotective pigments to total pigment concentration could be attributed in large part to changes in the cellular content of photosynthetic pigments (PSP) rather than photoprotective pigments (PPP), as evidenced by a depth-dependent increase of the intracellular concentration of the divinyl chlorophyll-a(DVChl-a) whilst the intracellular concentration of the PPP zeaxanthin remained relatively uniform with depth. The ability ofProchlorococcuscells to adjust their DVChl-acell-1over a large gradient in light intensity was reflected in more highly variable estimates of carbon-to-Chl-aratio compared to those reported for other phytoplankton groups. This cellular property is likely the combined result of photoacclimatory changes at the cellular level and a shift in dominant ecotypes. Developing a mechanistic understanding of sources of variability in pigmentation of picocyanobacteria is critical if the pigment markers and bio-optical properties of these cells are to be used to map their biogeography and serve as indicators of photoacclimatory state of subtropical phytoplankton communities more broadly. It would also allow better assessment of effects on, and adaptability of phytoplankton communities in the tropical/subtropical ocean due to climate change.

     
    more » « less
  3. Abstract

    Terrestrial photosynthesis requires the evaporation of water (transpiration) in exchange for CO2needed to form sugars. The water for transpiration is drawn up through plant roots, stem, and branches via a water potential gradient. However, this flow of water—or sap ascent—requires energy to lift the water to the canopy and to overcome the resistance of the plant’s water transporting xylem. Here, we use a combination of field measurements of plant physiology (hydraulic conductivity) and state‐of‐the‐science global estimates of transpiration to calculate how much energy is passively harvested by plants to power the sap ascent pump across the world’s terrestrial vegetation. Globally, we find that 0.06 W/m2is consumed in sap ascent over forest dominated ecosystems or 9.4 PWh/yr (equal to global hydropower energy production). Though small in comparison to other components of the Earth’s surface energy budget, sap ascent work in forests represents 14.2% of the energy compared to the energy consumed to create sugars through photosynthesis, with values up to 18% in temperate rainforests. The power needed for sap ascent generally increases with photosynthesis, but is moderated by both climate and plant physiology, as the most work is consumed in regions with large transpiration fluxes (such as the moist tropics) and in areas where vegetation has low conductivity (such as temperate rainforests dominated by conifer trees). Here, we present a bottom‐up analysis of sap ascent work that demonstrates its significant role in plant function across the globe.

     
    more » « less
  4. Abstract

    The selective use of seasonal precipitation by vegetation is critical to understanding the residence time and flow path of water in watersheds, yet there are limited datasets to test how climate alters these dynamics. Here, we use measurements of the seasonal cycle of tree ringO for two widespread conifer species in the Rocky Mountains of North America to provide a multi‐decadal depiction of the seasonal origins of forest water use. The results show that while the conifer tree stands had a dominant preference for use of snowmelt, there were multi‐annual periods over the last four decades when use of summer precipitation was preferential. Utilization of summer rain emerged during years with increased snowfall and tree growth, suggesting that summer rain enhanced the transpiration stream only during the periods of highest water use. We hypothesize this could be explained through shallowing of the root profile during wetter periods and/or through the influence of changing water table depths on the residence time of summer precipitation in the root zone. We suggest the tree ring proxy approach used here could be applied in other watersheds to provide critical insight into the temporal dynamics of plant water use that could not be inferred from short measurement campaigns. These data on the seasonal origins of forest water are critical for understanding forest vulnerability to drought, the processes that affect precipitation pathways and residence time in watersheds and the interpretation of tree ring proxy data.

     
    more » « less
  5. Abstract

    Forest canopy water use and carbon cycling traits (WCT) can vary substantially and in spatially organized patterns, with significant impacts on watershed ecohydrology. In many watersheds, WCT may vary systematically along and between hydrologic flowpaths as an adaptation to available soil water, nutrients, and microclimate‐mediated atmospheric water demand. We hypothesize that the emerging patterns of WCT at the hillslope to catchment scale provide a more resistant ecohydrological system, particularly with respect to drought stress, and the maintenance of high levels of productivity. Rather than attempting to address this hypothesis with species‐specific patterns, we outline broader functional WCT groups and explore the sensitivity of water and carbon balances to the representation of canopy WCT functional organization through a modelling approach. We use a well‐studied experimental watershed in North Carolina where detailed mapping of forest community patterns are sufficient to describe WCT functional organization. Ecohydrological models typically use broad‐scale characterizations of forest canopy composition based on remotely sensed information (e.g., evergreen vs. deciduous), which may not adequately represent the range or spatial pattern of functional group WCT at hillslope to watershed scales. We use three different representations of WCT functional organizations: (1) restricting WCT to deciduous/conifer differentiation, (2) utilizing more detailed, but aspatial, information on local forest community composition, and (3) spatially distributed representation of local forest WCT. Accounting for WCT functional organization information improves model performance not only in terms of capturing observed flow regimes (especially watershed‐scale seasonal flow dynamics) but also in terms of representing more detailed canopy ecohydrologic behaviour (e.g., root zone soil moisture, evapotranspiration, and net canopy photosynthesis), especially under dry condition. Results suggest that the well‐known zonation of forest communities over hydrologic gradients is not just a local adaptation but also provides a property that regulates hillslope to catchment‐scale behaviour of water use and drought resistance.

     
    more » « less