skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.


Title: Parasitic infection increases risk-taking in a social, intermediate host carnivore
Abstract

Toxoplasma gondiiis a protozoan parasite capable of infecting any warm-blooded species and can increase risk-taking in intermediate hosts. Despite extensive laboratory research on the effects ofT. gondiiinfection on behaviour, little is understood about the effects of toxoplasmosis on wild intermediate host behavior. Yellowstone National Park, Wyoming, USA, has a diverse carnivore community including gray wolves (Canis lupus) and cougars (Puma concolor), intermediate and definitive hosts ofT. gondii, respectively. Here, we used 26 years of wolf behavioural, spatial, and serological data to show that wolf territory overlap with areas of high cougar density was an important predictor of infection. In addition, seropositive wolves were more likely to make high-risk decisions such as dispersing and becoming a pack leader, both factors critical to individual fitness and wolf vital rates. Due to the social hierarchy within a wolf pack, we hypothesize that the behavioural effects of toxoplasmosis may create a feedback loop that increases spatial overlap and disease transmission between wolves and cougars. These findings demonstrate that parasites have important implications for intermediate hosts, beyond acute infections, through behavioural impacts. Particularly in a social species, these impacts can surge beyond individuals to affect groups, populations, and even ecosystem processes.

 
more » « less
NSF-PAR ID:
10381803
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Biology
Volume:
5
Issue:
1
ISSN:
2399-3642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The spatial organization of a population can influence the spread of information, behaviour and pathogens. Group territory size and territory overlap and components of spatial organization, provide key information as these metrics may be indicators of habitat quality, resource dispersion, contact rates and environmental risk (e.g. indirectly transmitted pathogens). Furthermore, sociality and behaviour can also shape space use, and subsequently, how space use and habitat quality together impact demography.

    Our study aims to identify factors shaping the spatial organization of wildlife populations and assess the impact of epizootics on space use. We further aim to explore the mechanisms by which disease perturbations could cause changes in spatial organization.

    Here we assessed the seasonal spatial organization of Serengeti lions and Yellowstone wolves at the group level. We use network analysis to describe spatial organization and connectivity of social groups. We then examine the factors predicting mean territory size and mean territory overlap for each population using generalized additive models.

    We demonstrate that lions and wolves were similar in that group‐level factors, such as number of groups and shaped spatial organization more than population‐level factors, such as population density. Factors shaping territory size were slightly different than factors shaping territory overlap; for example, wolf pack size was an important predictor of territory overlap, but not territory size. Lion spatial networks were more highly connected, while wolf spatial networks varied seasonally. We found that resource dispersion may be more important for driving territory size and overlap for wolves than for lions. Additionally, canine distemper epizootics may have altered lion spatial organization, highlighting the importance of including infectious disease epizootics in studies of behavioural and movement ecology.

    We provide insight about when we might expect to observe the impacts of resource dispersion, disease perturbations, and other ecological factors on spatial organization. Our work highlights the importance of monitoring and managing social carnivore populations at the group level. Future research should elucidate the complex relationships between demographics, social and spatial structure, abiotic and biotic conditions and pathogen infections.

     
    more » « less
  2. Abstract Background

    Environmental conditions can influence animal movements, determining when and how much animals move. Yet few studies have quantified how abiotic environmental factors (e.g., ambient temperature, snow depth, precipitation) may affect the activity patterns and metabolic demands of wide-ranging large predators. We demonstrate the utility of accelerometers in combination with more traditional GPS telemetry to measure energy expenditure, ranging patterns, and movement ecology of 5 gray wolves (Canis lupus), a wide-ranging social carnivore, from spring through autumn 2015 in interior Alaska, USA.

    Results

    Wolves exhibited substantial variability in home range size (range 500–8300 km2) that was not correlated with daily energy expenditure. Mean daily energy expenditure and travel distance were 22 MJ and 18 km day−1, respectively. Wolves spent 20% and 17% more energy during the summer pup rearing and autumn recruitment seasons than the spring breeding season, respectively, regardless of pack reproductive status. Wolves were predominantly crepuscular but during the night spent 2.4 × more time engaged in high energy activities (such as running) during the pup rearing season than the breeding season.

    Conclusion

    Integrating accelerometry with GPS telemetry can reveal detailed insights into the activity and energetics of wide-ranging predators. Heavy precipitation, deep snow, and high ambient temperatures each reduced wolf mobility, suggesting that abiotic conditions can impact wolf movement decisions. Identifying such patterns is an important step toward evaluating the influence of environmental factors on the space use and energy allocation in carnivores with ecosystem-wide cascading effects, particularly under changing climatic conditions.

     
    more » « less
  3. Abstract

    Top predators have cascading effects throughout the food web, but their impacts on scavenger abundance are largely unknown. Gray wolves (Canis lupus) provide carrion to a suite of scavenger species, including the common raven (Corvus corax). Ravens are wide‐ranging and intelligent omnivores that commonly take advantage of anthropogenic food resources. In areas where they overlap with wolves, however, ravens are numerous and ubiquitous scavengers of wolf‐acquired carrion. We aimed to determine whether subsidies provided through wolves are a limiting factor for raven populations in general and how the wolf reintroduction to Yellowstone National Park in 1995–1997 affected raven population abundance and distribution on the Yellowstone's Northern Range specifically. We counted ravens throughout Yellowstone's Northern Range in March from 2009 to 2017 in both human‐use areas and wolf habitat. We then used statistics related to the local wolf population and the winter weather conditions to model raven abundance during our study period and predict raven abundance on the Northern Range both before and after the wolf reintroduction. In relatively severe winters with greater snowpack, raven abundance increased in areas of human use and decreased in wolf habitat. When wolves were able to acquire more carrion, however, ravens increased in wolf habitat and decreased in areas with anthropogenic resources. Raven populations prior to the wolf reintroduction were likely more variable and heavily dependent on ungulate winter‐kill and hunter‐provided carcasses. The wolf recovery in Yellowstone helped stabilize raven populations by providing a regular food supply, regardless of winter severity. This stabilization has important implications for effective land management as wolves recolonize the west and global climate patterns change.

     
    more » « less
  4. Abstract

    Gray wolf (Canis lupus) dietary behavior can be highly variable; prey species for wolves span a range of ungulates to the consumption of smaller animals. While prey species for wolves are well documented, carcass utilization within and between wolf populations is less understood. This paper examines a modern population of wolves from the Greater Yellowstone Ecosystem (GYE) with dental microwear texture analysis (DMTA) to gauge utilization of bone resources, or durophagy, across biological, physical, social, geographical, and temporal variables. Results indicate gradation in durophagous behavior among GYE wolves does not correlate with sex, intra‐population body size (as inferred from skeletal and soft tissue measurements), pack association, or age class. Together, findings suggest that feeding ecologies for wolves are not specific to these factors. We also found that antemortem tooth breakage rates are not positively correlated with dental microwear textures that infer durophagy. We further compare dental microwear measures with previously published data from Alaskan wolves, who were collected decades before the GYE wolf sample. Results imply elevated carcass exploitation in the contemporary GYE wolf population sample. If minimal inter‐population differences are assumed, data presented here show dietary behaviors of North American gray wolves have changed over the past fifty years, indicating a possible long‐term trend that may be linked to decreased winter severity and climate change.

     
    more » « less
  5. Abstract

    There is growing evidence that prey perceive the risk of predation and alter their behavior in response, resulting in changes in spatial distribution and potential fitness consequences. Previous approaches to mapping predation risk across a landscape quantify predator space use to estimate potential predator‐prey encounters, yet this approach does not account for successful predator attack resulting in prey mortality. An exception is a prey kill site that reflects an encounter resulting in mortality, but obtaining information on kill sites is expensive and requires time to accumulate adequate sample sizes.

    We illustrate an alternative approach using predator scat locations and their contents to quantify spatial predation risk for elk(Cervus canadensis) from multiple predators in the Rocky Mountains of Alberta, Canada. We surveyed over 1300 km to detect scats of bears (Ursus arctos/U.americanus), cougars (Puma concolor), coyotes (Canis latrans), and wolves (C.lupus). To derive spatial predation risk, we combined predictions of scat‐based resource selection functions (RSFs) weighted by predator abundance with predictions that a predator‐specific scat in a location contained elk. We evaluated the scat‐based predictions of predation risk by correlating them to predictions based on elk kill sites. We also compared scat‐based predation risk on summer ranges of elk following three migratory tactics for consistency with telemetry‐based metrics of predation risk and cause‐specific mortality of elk.

    We found a strong correlation between the scat‐based approach presented here and predation risk predicted by kill sites and (r = .98,p < .001). Elk migrating east of the Ya Ha Tinda winter range were exposed to the highest predation risk from cougars, resident elk summering on the Ya Ha Tinda winter range were exposed to the highest predation risk from wolves and coyotes, and elk migrating west to summer in Banff National Park were exposed to highest risk of encountering bears, but it was less likely to find elk in bear scats than in other areas. These patterns were consistent with previous estimates of spatial risk based on telemetry of collared predators and recent cause‐specific mortality patterns in elk.

    A scat‐based approach can provide a cost‐efficient alternative to kill sites of quantifying broad‐scale, spatial patterns in risk of predation for prey particularly in multiple predator species systems.

     
    more » « less