skip to main content


Title: Population expansion, divergence, and persistence in Western Fence Lizards (Sceloporus occidentalis) at the northern extreme of their distributional range
Abstract

Population dynamics within species at the edge of their distributional range, including the formation of genetic structure during range expansion, are difficult to study when they have had limited time to evolve. Western Fence Lizards (Sceloporus occidentalis) have a patchy distribution at the northern edge of their range around the Puget Sound, Washington, where they almost exclusively occur on imperiled coastal habitats. The entire region was covered by Pleistocene glaciation as recently as 16,000 years ago, suggesting that populations must have colonized these habitats relatively recently. We tested for population differentiation across this landscape using genome-wide SNPs and morphological data. A time-calibrated species tree supports the hypothesis of a post-glacial establishment and subsequent population expansion into the region. Despite a strong signal for fine-scale population genetic structure across the Puget Sound with as many as 8–10 distinct subpopulations supported by the SNP data, there is minimal evidence for morphological differentiation at this same spatiotemporal scale. Historical demographic analyses suggest that populations expanded and diverged across the region as the Cordilleran Ice Sheet receded. Population isolation, lack of dispersal corridors, and strict habitat requirements are the key drivers of population divergence in this system. These same factors may prove detrimental to the future persistence of populations as they cope with increasing shoreline development associated with urbanization.

 
more » « less
Award ID(s):
2023723
NSF-PAR ID:
10381814
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Species often experience spatial environmental heterogeneity across their range, and populations may exhibit signatures of adaptation to local environmental characteristics. Other population genetic processes, such as migration and genetic drift, can impede the effects of local adaptation. Genetic drift in particular can have a pronounced effect on population genetic structure during large‐scale geographic expansions, where a series of founder effects leads to decreases in genetic variation in the direction of the expansion. Here, we explore the genetic diversity of a desert lizard that occupies a wide range of environmental conditions and that has experienced post‐glacial expansion northwards along two colonization routes. Based on our analyses of a large SNP data set, we find evidence that both climate and demographic history have shaped the genetic structure of populations. Pronounced genetic differentiation was evident between populations occupying cold versus hot deserts, and we detected numerous loci with significant associations with climate. The genetic signal of founder effects, however, is still present in the genomes of the recently expanded populations, which comprise subsets of genetic variation found in the southern populations.

     
    more » « less
  2. Abstract

    Plants demonstrate exceptional variation in genome size across species, and their genome sizes can also vary dramatically across individuals and populations within species. This aspect of genetic variation can have consequences for traits and fitness, but few studies attributed genome size differentiation to ecological and evolutionary processes. Biological invasions present particularly useful natural laboratories to infer selective agents that might drive genome size shifts across environments and population histories. Here, we test hypotheses for the evolutionary causes of genome size variation across 14 invading populations of yellow starthistle,Centaurea solstitialis, in California, United States. We use a survey of genome sizes and trait variation to ask: (1) Is variation in genome size associated with developmental trait variation? (2) Are genome sizes smaller toward the leading edge of the expansion, consistent with selection for “colonizer” traits? Or alternatively, does genome size increase toward the leading edge of the expansion, consistent with predicted consequences of founder effects and drift? (3) Finally, are genome sizes smaller at higher elevations, consistent with selection for shorter development times? We found that 2C DNA content varied 1.21‐fold among all samples, and was associated with flowering time variation, such that plants with larger genomes reproduced later, with lower lifetime capitula production. Genome sizes increased toward the leading edge of the invasion, but tended to decrease at higher elevations, consistent with genetic drift during range expansion but potentially strong selection for smaller genomes and faster development time at higher elevations. These results demonstrate how genome size variation can contribute to traits directly tied to reproductive success, and how selection and drift can shape that variation. We highlight the influence of genome size on dynamics underlying a rapid range expansion in a highly problematic invasive plant.

     
    more » « less
  3. Abstract

    Marine resource subsidies alter consumer dynamics of recipient populations in coastal systems. The response to these subsidies by generalist consumers is often not uniform, creating inter- and intrapopulation diet variation and niche diversification that may be intensified across heterogeneous landscapes. We sampled western fence lizards,Sceloporus occidentalis, from Puget Sound beaches and coastal and inland forest habitats, in addition to the lizards’ marine and terrestrial prey items to quantify marine and terrestrial resource use with stable isotope analysis and mixing models. Beach lizards had higher average δ13C and δ15N values compared to coastal and inland forest lizards, exhibiting a strong mixing line between marine and terrestrial prey items. Across five beach sites, lizard populations received 20–51% of their diet from marine resources, on average, with individual lizards ranging between 7 and 86% marine diet. The hillslope of the transition zone between marine and terrestrial environments at beach sites was positively associated with marine-based diets, as the steepest sloped beach sites had the highest percent marine diets. Within-beach variation in transition zone slope was positively correlated with the isotopic niche space of beach lizard populations. These results demonstrate that physiography of transitional landscapes can mediate resource flow between environments, and variable habitat topography promotes niche diversification within lizard populations. Marine resource subsidization of Puget Sound beachS. occidentalispopulations may facilitate occupation of the northwesternmost edge of the species range. Shoreline restoration and driftwood beach habitat conservation are important to support the unique ecology of Puget SoundS. occidentalis.

     
    more » « less
  4. Abstract Aim

    The drivers of genetic diversity in Amazonia, the most species‐rich set of ecosystems on Earth, are still incompletely understood. Species from distinct Amazonian ecosystems have unique biogeographic histories that will reflect regional landscape and climatic drivers of genetic diversity. We studied bird species from patchy Amazonian white‐sand ecosystems (WSE) to evaluate the occurrence of shared biogeographic patterns to better understand the complex environmental and landscape history of Amazonia and its biodiversity.

    Location

    Northern South America; Amazonia.

    Taxon

    Passeriformes.

    Methods

    We sequenced Ultra‐conserved Elements (UCEs) from 177 samples of seven bird species associated with WSE that have overlapping ranges. We used the SNP matrices and sequence data to estimate genetic structure and migration surfaces using ‘conStruct’ andeems, performed model‐selection to obtain the most probable demographic histories on ‘PipeMasterand implemented analyses of shared demography withecoevolity.

    Results

    Shallow genetic structure patterns varied among species. The Amazon river was the only barrier shared among them. Population structure dates to no more than 450,000 years ago. Nine geographically structured populations showed signals of population size changes and eight of these occur in Northern Amazonia. Population expansion was inferred at two distinct times: ~100,000 and ~ 50,000 years ago. The timing of co‐expanding populations is consistent with differences in habitat preference, as species that prefer dense scrubby to forested vegetation expanded more recently compared to species that prefer open vegetation.

    Main conclusions

    WSE species responded in concert to environmental and landscape changes that occurred in the relatively recent past. Population expansions were likely driven by the genesis of new WSE patches and a return to wetter conditions after glacial periods. Pleistocene climatic cycles affected the distribution and dynamics of open vegetation habitats in Amazonia, especially in the Northern region, driving genetic diversity and demographic patterns of its associated biota.

     
    more » « less
  5. Abstract Aim

    Natural selection typically results in the homogenization of reproductive traits, reducing natural variation within populations; thus, highly polymorphic species present unresolved questions regarding the mechanisms that shape and maintain gene flow given a diversity of phenotypes. We used an integrative framework to characterize phenotypic diversity and assess how evolutionary history and population genetics affect the highly polymorphic nature of a California endemic lily.

    Location

    California, United States.

    Taxon

    Butterfly mariposa lily,Calochortus venustus(Liliaceae).

    Methods

    We summarized phenotypic diversity at both metapopulation and subpopulation scales to explore spatial phenotypic distributions. We sampled 174 individuals across the species range representing multiple samples for each population and each phenotype. We used restriction‐site‐associated DNA sequencing (RAD‐Seq) to detect population clusters, gene flow between phenotypes and between populations, infer haplotype networks, and reconstruct ancestral range evolution to infer historical migration and range expansion.

    Results

    Polymorphic floral traits within the species such as petal pigmentation and distal spots are geographically structured, and inferred evolutionary history is consistent with a ring species pattern involving a complex of populations having experienced sequential change in genetic and phenotypic variation from the founding population. Populations remain interconnected yet have differentiated from each other along a bifurcating south‐to‐north range expansion, consequently indicating parallel evolution towards the white morphotype in the northern range. Thus, our phylogeographical analyses reveal morphological convergence with population genetic cohesion irrespective of phenotypic diversity.

    Main conclusions

    Phenotypic variation in the highly polymorphicCalochortus venustusis not due to genetic differentiation between phenotypes; rather there is genetic cohesion within six geographically defined populations, some of which maintain a high level of within‐population phenotypic diversity. Our results demonstrate that analyses of polymorphic taxa greatly benefit from disentangling phenotype from genotype at various spatial scales. We discuss results in light of ring species concepts and the need to determine the adaptive significance of the patterns we report.

     
    more » « less