skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: The miniJPAS survey: stellar atmospheric parameters from 56 optical filters
ABSTRACT

With a unique set of 54 overlapping narrow-band and two broader filters covering the entire optical range, the incoming Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) will provide a great opportunity for stellar physics and near-field cosmology. In this work, we use the miniJPAS data in 56 J-PAS filters and 4 complementary SDSS-like filters to explore and prove the potential of the J-PAS filter system in characterizing stars and deriving their atmospheric parameters. We obtain estimates for the effective temperature with a good precision (<150 K) from spectral energy distribution fitting. We have constructed the metallicity-dependent stellar loci in 59 colours for the miniJPAS FGK dwarf stars, after correcting certain systematic errors in flat-fielding. The very blue colours, including uJAVA − r, J0378 − r, J0390 − r, uJPAS − r, show the strongest metallicity dependence, around 0.25 mag dex−1. The sensitivities decrease to about 0.1 mag dex−1 for the J0400 − r, J0410 − r, and J0420 − r colours. The locus fitting residuals show peaks at the J0390, J0430, J0510, and J0520 filters, suggesting that individual elemental abundances such as [Ca/Fe], [C/Fe], and [Mg/Fe] can also be determined from the J-PAS photometry. Via stellar loci, we have achieved a typical metallicity precision of 0.1 dex. The miniJPAS filters also demonstrate strong potential in discriminating dwarfs and giants, particularly the J0520 and J0510 filters. Our results demonstrate the power of the J-PAS filter system in stellar parameter determinations and the huge potential of the coming J-PAS survey in stellar and Galactic studies.

 
more » « less
NSF-PAR ID:
10381832
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
518
Issue:
2
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 2018-2033
Size(s):
["p. 2018-2033"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Large-scale surveys will provide spectroscopy for ∼50 million resolved stars in the Milky Way and Local Group. However, these data will have a high degree of heterogeneity and most will be low-resolution (R< 10,000), posing challenges to measuring consistent and reliable stellar labels. Here, we introduce a framework for identifying and remedying these issues. By simultaneously fitting the full spectrum and Gaia photometry withthe Payne, we measure ∼30 abundances for eight metal-poor red giants in M15. From degraded quality Keck/HIRES spectra, we evaluate trends with resolution and signal-to-noise ratio (S/N) and find that (i) ∼20 abundances are recovered consistently within ≲0.1 dex agreement and with ≲0.05–0.15 dex systematic uncertainties from 10,000 ≲R≲ 80,000; (ii) for nine elements (C, Mg, Ca, Sc, Ti, Fe, Ni, Y, and Nd), this systematic precision and accuracy extends down toR∼ 2500; and (iii) while most elements do not exhibit strong S/N-dependent systematics, there are nonnegligible biases for four elements (C, Mg, Ca, and Dy) below S/N ∼ 10 pixel−1. We compare statistical uncertainties from Markov Chain Monte Carlo sampling to the easier-to-compute Cramér–Rao bounds and find that they agree for ∼85% of elements, indicating the latter to be a reliable and faster way to estimate uncertainties. Our analysis illustrates the great promise of low-resolution spectroscopy for stellar chemical abundance work in the low-metallicity regime, and ongoing improvements to stellar models (e.g., 3D-NLTE physics) will only further extend its viability to more stars, more elements, and higher precision and accuracy.

     
    more » « less
  2. Context. Cool stars, such as M giants, can only be analyzed in the near-infrared (NIR) regime due to the ubiquitous titanium oxide features in optical spectra of stars with T eff  < 4000 K. In dust-obscured regions, the inner bulge and Galactic center region, the intrinsically bright M giants observed in the NIR are an optimal option for studying stellar abundances and the chemical evolution of stellar populations. Because of the uncertainties in photometric methods, a method for determining the stellar parameters for M giants from the NIR spectra themselves is needed. Aims. We develop a method for determining the stellar parameters for M giants from the NIR spectra. We validate the method by deriving the stellar parameters for nearby well-studied M giants with spectra from the spectral library of the Immersion GRating INfrared Spectrograph (IGRINS). We demonstrate the accuracy and precision of our method by determining the stellar parameters and α -element trends versus metallicity for solar neighborhood M giants. Methods. We carried out new observations of 44 M giant stars with IGRINS mounted on the Gemini South telescope. We also obtained the full H and K band IGRINS spectra of six nearby well-studied M giants at a spectral resolving power of R  = 45 000 from the IGRINS spectral library. We used the tool called spectroscopy made easy in combination with one-dimensional (1D) model atmospheres in a radiative and convective scheme (MARCS) stellar atmosphere models to model the synthetic spectrum that fits the observed spectrum best. Results. The effective temperatures that we derive from our new method (tested for 3400 ≲  T eff  ≲ 4000 K here) agree excellently with those of the six nearby well-studied M giants, which indicates that the accuracy is indeed high. For the 43 solar neighborhood M giants, our T eff , log g , [Fe/H], ξ micro , [C/Fe], [N/Fe], and [O/Fe] agree with APOGEE with mean differences and a scatter (our method – APOGEE) of −67±33 K, −0.31±0.15 dex, 0.02±0.05 dex, 0.22±0.13 km s −1 , −0.05±0.06 dex, 0.06±0.06 dex, and 0.02±0.09 dex, respectively. Furthermore, the tight offset with a small dispersion compared to the APOGEE T eff indicates a high precision in our derived temperatures and those derived from the APOGEE pipeline. The typical uncertainties in the stellar parameters are found to be ±100 K in T eff , ±0.2 dex in log g , ±0.1 dex in [Fe/H], and ±0.1 km s −1 in ξ micro . The α -element trends versus metallicity for Mg, Si, Ca, and Ti are consistent with the APOGEE DR17 trends for the same stars and with the GILD optical trends. We also find a clear enhancement in the abundances for thick-disk stars. 
    more » « less
  3. Abstract We report the discovery of Pegasus IV, an ultra-faint dwarf galaxy found in archival data from the Dark Energy Camera processed by the DECam Local Volume Exploration Survey. Pegasus IV is a compact, ultra-faint stellar system ( r 1 / 2 = 41 − 6 + 8 pc; M V = −4.25 ± 0.2 mag) located at a heliocentric distance of 90 − 6 + 4 kpc . Based on spectra of seven nonvariable member stars observed with Magellan/IMACS, we confidently resolve Pegasus IV’s velocity dispersion, measuring σ v = 3.3 − 1.1 + 1.7 km s −1 (after excluding three velocity outliers); this implies a mass-to-light ratio of M 1 / 2 / L V , 1 / 2 = 167 − 99 + 224 M ⊙ / L ⊙ for the system. From the five stars with the highest signal-to-noise spectra, we also measure a systemic metallicity of [Fe/H] = − 2.63 − 0.30 + 0.26 dex, making Pegasus IV one of the most metal-poor ultra-faint dwarfs. We tentatively resolve a nonzero metallicity dispersion for the system. These measurements provide strong evidence that Pegasus IV is a dark-matter-dominated dwarf galaxy, rather than a star cluster. We measure Pegasus IV’s proper motion using data from Gaia Early Data Release 3, finding ( μ α * , μ δ ) = (0.33 ± 0.07, −0.21 ± 0.08) mas yr −1 . When combined with our measured systemic velocity, this proper motion suggests that Pegasus IV is on an elliptical, retrograde orbit, and is currently near its orbital apocenter. Lastly, we identify three potential RR Lyrae variable stars within Pegasus IV, including one candidate member located more than 10 half-light radii away from the system’s centroid. The discovery of yet another ultra-faint dwarf galaxy strongly suggests that the census of Milky Way satellites is still incomplete, even within 100 kpc. 
    more » « less
  4. ABSTRACT

    We present a 6D map of the Orphan–Chenab (OC) stream by combining the data from Southern Stellar Stream Spectroscopic Survey (S5) and Gaia. We reconstruct the proper motion, radial velocity, distance, on-sky track, and stellar density along the stream with spline models. The stream has a total luminosity of MV = −8.2 and metallicity of [Fe/H] = −1.9, similar to classical Milky Way (MW) satellites like Draco. The stream shows drastic changes in its physical width varying from 200 pc to 1 kpc, but a constant line-of-sight velocity dispersion of 5 $\mathrm{km\, s^{-1}}$. Despite the large apparent variation in the stellar number density along the stream, the flow rate of stars along the stream is remarkably constant. We model the 6D stream track by a Lagrange-point stripping method with a flexible MW potential in the presence of a moving extended Large Magellanic Cloud (LMC). This allows us to constrain the mass profile of the MW within the distance range 15.6 < r < 55.5 kpc, with the best measured enclosed mass of $(2.85\pm 0.1)\times 10^{11}\, \mathrm{\, M_\odot }$ within 32.4 kpc. Our stream measurements are highly sensitive to the LMC mass profile with the most precise measurement of its enclosed mass made at 32.8 kpc, $(7.02\pm 0.9)\times 10^{10}\, {\rm M}_\odot$. We also detect that the LMC dark matter halo extends to at least 53 kpc. The fitting of the OC stream allows us to constrain the past LMC trajectory and the degree of dynamical friction it experienced. We demonstrate that the stars in the OC stream show large energy and angular momentum spreads caused by LMC perturbation.

     
    more » « less
  5. Abstract

    Precision CCDuvbyCaHβphotometry is presented of the old cluster, M67, covering one square degree with typical internal precision at the 0.005–0.020 mag level toV∼ 17. The photometry is calibrated using standards over a wide range in luminosity and temperature from NGC 752 and zeroed to the standard system via published photoelectric observations. Relative to NGC 752, differential offsets in reddening and metallicity are derived using astrometric members, supplemented by radial velocity information. From single-star members, offsets in the sense (M67−NGC 752) areδE(by) = −0.005 ± 0.001 (sem) mag from 327 F/G dwarfs andδ[Fe/H] = 0.062 ± 0.006 (sem) dex from the combinedm1andhkindices of 249 F dwarfs, leading toE(by) = 0.021 ± 0.004 (sem) and [Fe/H]M67= +0.030 ± 0.016 (sem) assuming [Fe/H]Hyades= +0.12. With probable binaries eliminated usingc1, (by) indices, 83 members with (π/σπ) > 50 generate (mM)0= 8.220 ± 0.005 (sem) for NGC 752 and an isochronal age of 1.45 ± 0.05 Gyr. Using the same parallax restriction for 312 stars, M67 has (mM) = 9.77 ± 0.02 (sem), leading to an age tied solely to the luminosity of the subgiant branch of 3.70 ± 0.03 Gyr. The turnoff color spread implies ±0.1 Gyr, but the turnoff morphology defines a younger age/higher mass for the stars, consistent with recent binary analysis and broadband photometry indicating possible missing physics in the isochrones. Anomalous stars positioned blueward of the turnoff are discussed.

     
    more » « less