Amyloid cross-seeding, as a result of direct interaction and co-aggregation between different disease-causative peptides, is considered as a main mechanism for the spread of the overlapping pathology across different cells and tissues between different protein-misfolding diseases (PMDs). Despite the biomedical significance of amyloid cross-seeding in amyloidogenesis, it remains a great challenge to discover amyloid cross-seeding systems and reveal their cross-seeding structures and mechanisms. Herein, we are the first to report that GNNQQNY – a short fragment from yeast prion protein Sup35 – can cross-seed with both amyloid-β (Aβ, associated with Alzheimer's disease) and human islet amyloid polypeptide (hIAPP, associated with type II diabetes) to form β-structure-rich assemblies and to accelerate amyloid fibrillization. Dry, steric β-zippers, formed by the two β-sheets of different amyloid peptides, provide generally interactive and structural motifs to facilitate amyloid cross-seeding. The presence of different steric β-zippers in a variety of GNNQQNY-Aβ and GNNQQNY-hIAPP assemblies also explains amyloid polymorphism. In addition, alteration of steric zipper formation by single-point mutations of GNNQQNY and interactions of GNNQQNY with different Aβ and hIAPP seeds leads to different amyloid cross-seeding efficiencies, further confirming the existence of cross-seeding barriers. This work offers a better structural-based understanding of amyloid cross-seeding mechanisms linked to different PMDs.
more »
« less
Cross-seeding between Aβ and SEVI indicates a pathogenic link and gender difference between alzheimer diseases and AIDS
Abstract Amyloid-β (Aβ) and semen-derived enhancer of viral infection (SEVI) are considered as the two causative proteins for central pathogenic cause of Alzheimer’s disease (AD) and HIV/AIDS, respectively. Separately, Aβ-AD and SEVI-HIV/AIDS systems have been studied extensively both in fundamental research and in clinical trials. Despite significant differences between Aβ-AD and SEVI-HIV/AIDS systems, they share some commonalities on amyloid and antimicrobial characteristics between Aβ and SEVI, there are apparent overlaps in dysfunctional neurological symptoms between AD and HIV/AIDS. Few studies have reported a potential pathological link between Aβ-AD and SEVI-HIV/AIDS at a protein level. Here, we demonstrate the cross-seeding interactions between Aβ and SEVI proteins using in vitro and in vivo approaches. Cross-seeding of SEVI with Aβ enabled to completely prevent Aβ aggregation at sub-stoichiometric concentrations, disaggregate preformed Aβ fibrils, reduce Aβ-induced cell toxicity, and attenuate Aβ-accumulated paralysis in transgenic AD C. elegans. This work describes a potential crosstalk between AD and HIV/AIDS via the cross-seeding between Aβ and SEVI, identifies SEVI as Aβ inhibitor for possible treatment or prevention of AD, and explains the role of SEVI in the gender difference in AD.
more »
« less
- Award ID(s):
- 2107619
- PAR ID:
- 10381862
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Communications Biology
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2399-3642
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Amyloid protein aggregation is associated with many neurodegenerative diseases, including amyloid‐β (Aβ)in Alzheimer disease, human islet amyloid polypeptide (hIAPP) in type II diabetes, and human calcitonin (hCT) in medullary thyroid carcinoma. Significant efforts have been made to develop different diagnostic and prevention strategies for the early detection and intervention of these disease‐causative protein aggregates. However, conventional design wisdoms are mostly limited to the molecules with either single function (amyloid imaging or amyloid prevention) or single targeting protein (Aβ, hIAPP, or hCT). Here, a rational design strategy of an amyloid‐aggregation‐induced emission (AIE)‐active molecule is demonstrated by conjugating an amyloid fragment of GNNQQNY (G7) with an AIE fluorescent molecule of triphenylvinyl benzoic acid (namely, G7‐TBA), making G7‐TBA as multiple‐target, dual‐function, amyloid probes and amyloid modulators for detecting, monitoring, and altering amyloid aggregation of three different amyloid proteins (Aβ, hIAPP, and hCT). G7‐TBA probe shows conformationally specific binding affinities to amyloid aggregates, switching from an “off” state (low fluorescence) for amyloid monomers to an “on” state (high fluorescence) for β‐structure‐rich amyloid oligomers and fibrils in aqueous solution. Further surface immobilization of TBA probes on surface plasmon resonance surfaces allows to amplify detection sensitivity and binding affinity to amyloid aggregates formed at different aggregation stages. G7‐TBA as amyloid modulator enables acceleration of amyloid fibrillization and selectively protects cells from hIAPP‐induced toxicity. The distinct amyloid detection and modulation of G7‐TBA are essentially derived from the cross‐seeding between G7 and amyloid aggregation via β‐structure interaction, which by far exceed the binding affinity between commercial ThT and amyloid aggregates. Such design concepts of amyloid‐AIE conjugates can be further explored as multiple‐function and target probes and/or modulators for biomedical applications.more » « less
-
Amyloid aggregation and microbial infection are considered as pathological risk factors for developing amyloid diseases, including Alzheimer's disease (AD), type II diabetes (T2D), Parkinson's disease (PD), and medullary thyroid carcinoma (MTC). Due to the multifactorial nature of amyloid diseases, single-target drugs and treatments have mostly failed to inhibit amyloid aggregation and microbial infection simultaneously, thus leading to marginal benefits for amyloid inhibition and medical treatments. Herein, we proposed and demonstrated a new “anti-amyloid and antimicrobial hypothesis” to discover two host-defense antimicrobial peptides of α-defensins containing β-rich structures (human neutrophil peptide of HNP-1 and rabbit neutrophil peptide of NP-3A), which have demonstrated multi-target, sequence-independent functions to (i) prevent the aggregation and misfolding of different amyloid proteins of amyloid-β (Aβ, associated with AD), human islet amyloid polypeptide (hIAPP, associated with T2D), and human calcitonin (hCT, associated with MTC) at sub-stoichiometric concentrations, (ii) reduce amyloid-induced cell toxicity, and (iii) retain their original antimicrobial activity upon the formation of complexes with amyloid peptides. Further structural analysis showed that the sequence-independent amyloid inhibition function of α-defensins mainly stems from their cross-interactions with amyloid proteins via β-structure interactions. The discovery of antimicrobial peptides containing β-structures to inhibit both microbial infection and amyloid aggregation greatly expands the new therapeutic potential of antimicrobial peptides as multi-target amyloid inhibitors for better understanding pathological causes and treatments of amyloid diseases.more » « less
-
Neurodegenerative diseases and cancers are considered to be two families of diseases caused by completely opposite cell-death mechanisms: the former caused by premature cell death, with the latter due to the increased resistance to cell death. Growing epidemiologic evidence appear to suggest an inverse correlation between neurodegenerative diseases and cancers. However, pathological links, particularly from a protein-cell interaction perspective, between these two families of diseases remains to be proven. Here, a fundamental study investigates the effects of three amyloid proteins of Aβ (associated with AD), hIAPP (associated with T2D), and hCT (associated with MTC) on pancreatic cancer (PANC-1) cells. Collective results demonstrate a general inhibitory activity of all of three amyloid proteins on cancer cell proliferation, but inhibition efficiencies are strongly dependent on amyloid sequence (Aβ, hIAPP, hCT), concentration (IC25, IC50, IC75), and aggregation states (monomers, oligomers). Amyloid proteins exhibit two pathways against cancer cells: amyloid monomer-induced ROS production to inhibit cell growth and amyloid oligomer-induced membrane disruption to kill cells. Collectively, the results demonstrate a general inhibition function of amyloid proteins to induce cancer cell death by preventing cell proliferation, suppressing cell migration, promoting reactive oxygen species production, and disrupting cell membranes.more » « less
-
Abstract Despite extensive efforts on probing the mechanism of Alzheimer’s disease (AD) and enormous investments into AD drug development, the lack of effective disease-modifying therapeutics and the complexity of the AD pathogenesis process suggest a great need for further insights into alternative AD drug targets. Herein, we focus on the chiral effects of truncated amyloid beta (Aβ) and offer further structural and molecular evidence for epitope region-specific, chirality-regulated Aβ fragment self-assembly and its potential impact on receptor-recognition. A multidimensional ion mobility-mass spectrometry (IM-MS) analytical platform and in-solution kinetics analysis reveal the comprehensive structural and molecular basis for differential Aβ fragment chiral chemistry, including the differential and cooperative roles of chiral Aβ N-terminal and C-terminal fragments in receptor recognition. Our method is applicable to many other systems and the results may shed light on the potential development of novel AD therapeutic strategies based on targeting the D-isomerized Aβ, rather than natural L-Aβ.more » « less
An official website of the United States government
