skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metrics and mechanisms: Measuring the unmeasurable in the science of science
Award ID(s):
2033970 2022055
PAR ID:
10382020
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Informetrics
Volume:
16
Issue:
2
ISSN:
1751-1577
Page Range / eLocation ID:
101290
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper reviews trends in GeoAI research and discusses cutting-edge advances in GeoAI and its roles in accelerating environmental and social sciences. It addresses ongoing attempts to improve the predictability of GeoAI models and recent research aimed at increasing model explainability and reproducibility to ensure trustworthy geospatial findings. The paper also provides reflections on the importance of defining the science of GeoAI in terms of its fundamental principles, theories, and methods to ensure scientific rigor, social responsibility, and lasting impacts. 
    more » « less
  2. We make the case for an enhanced adoption of matrix algebra in undergraduate chemical curriculum by laying out an example-driven perspective of Chemistry as a discipline that focuses on interactions—couplings—among various microscopic entities. Many Physical Chemistry textbooks and courses emphasize an operator-driven approach to Quantum Chemistry, favoring it over the equivalent matrix formalism. For example, one particularly popular textbook, does not even mention matrices until the discussion of the Hückel molecular-orbital theory (MO). We argue that educators’ adherence to the operator-only approach misses a pedagogical opportunity to help create a highly beneficial parallel framework of Chemistry in learners’ minds. This missing framework would conceptualize early on that Chemistry is not something that happens to stand-alone electrons, atoms, or molecules. Instead, Chemistry is all about interactions. The easiest—and most intuitive—way to describe many types of interactions mathematically is by using matrices. Many students and educators shy away from them, but matrices can be easily and intuitively understood as simply interaction or coupling tables. To a beginning learner’s brain, the idea of a table is much less abstract than that of an operator. Yet tables (i.e., matrices) can be used as simple tools for building powerful conceptual frameworks for describing chemical forces using fairly simple algebra instead of differential and integral calculus inherent in the operator representation. We will discuss several well- and less-well-known applications of matrices in chemistry, including a Fourier view of quantum confinement, vibrational mode couplings, and MO theory. In particular, we will describe a new density-matrix adaptation of the Hückel MO theory to general bonding scenarios in which the original Hückel model simply does not apply. 
    more » « less