The Ediacaran biota were soft-bodied organisms, many with enigmatic phylogenetic placement and ecology, living in marine environments between 574 and 539 million years ago. Some studies hypothesize a metazoan affinity and aerobic metabolism for these taxa, whereas others propose a fundamentally separate taxonomic grouping and a reliance on chemoautotrophy. To distinguish between these hypotheses and test the redox-sensitivity of Ediacaran organisms, here we present a high-resolution local and global redox dataset from carbonates that contain in situ Ediacaran fossils from Siberia. Cerium anomalies are consistently >1, indicating that local environments, where a diverse Ediacaran assemblage is preserved in situ as nodules and carbonaceous compressions, were pervasively anoxic. Additionally, δ238U values match other terminal Ediacaran sections, indicating widespread marine euxinia. These data suggest that some Ediacaran biotas were tolerant of at least intermittent anoxia, and thus had the capacity for a facultatively anaerobic lifestyle. Alternatively, these soft-bodied Ediacara organisms may have colonized the seafloor during brief oxygenation events not recorded by redox proxy data. Broad temporal correlations between carbon, sulfur, and uranium isotopes further highlight the dynamic redox landscape of Ediacaran-Cambrian evolutionary events.
more »
« less
A diverse Ediacara assemblage survived under low-oxygen conditions
Abstract The Ediacaran biota were soft-bodied organisms, many with enigmatic phylogenetic placement and ecology, living in marine environments between 574 and 539 million years ago. Some studies hypothesize a metazoan affinity and aerobic metabolism for these taxa, whereas others propose a fundamentally separate taxonomic grouping and a reliance on chemoautotrophy. To distinguish between these hypotheses and test the redox-sensitivity of Ediacaran organisms, here we present a high-resolution local and global redox dataset from carbonates that contain in situ Ediacaran fossils from Siberia. Cerium anomalies are consistently >1, indicating that local environments, where a diverse Ediacaran assemblage is preserved in situ as nodules and carbonaceous compressions, were pervasively anoxic. Additionally, δ238U values match other terminal Ediacaran sections, indicating widespread marine euxinia. These data suggest that some Ediacaran biotas were tolerant of at least intermittent anoxia, and thus had the capacity for a facultatively anaerobic lifestyle. Alternatively, these soft-bodied Ediacara organisms may have colonized the seafloor during brief oxygenation events not recorded by redox proxy data. Broad temporal correlations between carbon, sulfur, and uranium isotopes further highlight the dynamic redox landscape of Ediacaran-Cambrian evolutionary events.
more »
« less
- Award ID(s):
- 2020644
- PAR ID:
- 10382037
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The rise of animals across the Ediacaran–Cambrian transition marked a step-change in the history of life, from a microbially dominated world to the complex macroscopic biosphere we see today.1,2,3 While the importance of bioturbation and swimming in altering the structure and function of Earth systems is well established,4,5,6 the influence of epifaunal animals on the hydrodynamics of marine environments is not well understood. Of particular interest are the oldest “marine animal forests,”7 which comprise a diversity of sessile soft-bodied organisms dominated by the fractally branching rangeomorphs.8,9 Typified by fossil assemblages from the Ediacaran of Mistaken Point, Newfoundland,8,10,11 these ancient communities might have played a pivotal role in structuring marine environments, similar to modern ecosystems,7,12,13 but our understanding of how they impacted fluid flow in the water column is limited. Here, we use ecological modeling and computational flow simulations to explore how Ediacaran marine animal forests influenced their surrounding environment. Our results reveal how organism morphology and community structure and composition combined to impact vertical mixing of the surrounding water. We find that Mistaken Point communities were capable of generating high-mixing conditions, thereby likely promoting gas and nutrient transport within the “canopy.” This mixing could have served to enhance local-scale oxygen concentrations and redistribute resources like dissolved organic carbon. Our work suggests that Ediacaran marine animal forests may have contributed to the ventilation of the oceans over 560 million years ago, well before the Cambrian explosion of animals.more » « less
-
null (Ed.)The Shibantan Lagerstätte (551–543 Ma) in the Yangtse Gorges area in South China is one of the best-known examples of terminal Ediacaran fossil assemblages preserved in marine carbonate rocks. Taxonomically dominated by benthic organisms, the Shibantan Lagerstätte preserves various photoautotrophs, biomineralizing tubular fossils, Ediacara-type macrofossils (including rangeomorphs, arboreomorphs, erniettomorphs, palaeopascichnids, a possible dickinsoniomorph, the mobile bilaterian Yilingia and soft-bodied tubular fossils), abundant ichnofossils and a number of problematic and dubious fossils. Shibantan fossils provide intriguing insights into ecological interactions among mobile bilaterians, sessile benthic Ediacara-type organisms and microbial mats, thus offering important data to test various hypotheses accounting for the decline of the Ediacara biota and the concurrent expansion of bilaterian bioturbation and mobility across the Proterozoic–Phanerozoic transition.more » « less
-
The Nama Group of Namibia and South Africa preserves an extraordinary record of marine ecosystems existing in the lastc. 15 myr of the Ediacaran, comprising enigmatic and soft-bodied fossils that are part of the first major radiation of macroscopic life. Since their description at the beginning of the 20th century these fossils have played an important role in debates surrounding the affinities of iconic Ediacaran fossil groups, and ash beds preserved throughout the succession have been crucial to understanding rates and patterns of early animal evolution. Fossils preserved in varying contexts have allowed for detailed reconstructions of Ediacaran palaeobiology, and geochemical analyses provide a window into understanding the controls on Ediacaran taphonomic pathways, including crucial, and potentially widespread, roles played by clay minerals in exceptional fossil preservation.more » « less
-
Abstract The “second wave” of Ediacaran evolution (∼558–548 Ma) was characterized by the appearance of macroscopic organisms in shallow marine settings, where they formed communities with high morphological and ecological diversity, including new and more complex modes of life. Based on analogy with modern marine ecosystems, these early shallow water communities could have substantially modified local hydrodynamic conditions and influenced resource availability, but we know very little about how they interacted with their fluid environment at larger spatial scales. Here, we use computational fluid dynamics to investigate the hydrodynamics of different shallow marine Ediacaran communities based on fossil surfaces from Russia and South Australia. Our results reveal considerable hydrodynamic variability among these communities, ranging from unobstructed flow, to enhanced mixing, to very low in-canopy flow. This variability represents a noticeable shift from the more conserved hydrodynamic conditions reconstructed for older Ediacaran communities from deep water settings. The variation in how shallow marine Ediacaran communities affected local hydrodynamics could have given rise to notable differences in the distribution of crucial water-borne resources such as organic carbon and oxygen. We therefore hypothesize that increasing variability in community hydrodynamics was an important source of habitat heterogeneity during the late Ediacaran. On long timescales, this heterogeneity may have helped sculpt ecological opportunity, fostering the radiation of animals.more » « less
An official website of the United States government
