skip to main content


Title: Multiphase outflows in post-starburst E+A galaxies – I. General sample properties and the prevalence of obscured starbursts
ABSTRACT

E+A galaxies are believed to be a short phase connecting major merger ultraluminous infrared galaxies (ULIRGs) with red and dead elliptical galaxies. Their optical spectrum suggests a massive starburst that was quenched abruptly, and their bulge-dominated morphologies with tidal tails suggest that they are merger remnants. Active galactic nucleus (AGN)-driven winds are believed to be one of the processes responsible for the sudden quenching of star formation and for the expulsion and/or destruction of the remaining molecular gas. Little is known about AGN-driven winds in this short-lived phase. In this paper, we present the first and unique sample of post-starburst galaxy candidates with AGNs that show indications of ionized outflows in their optical emission lines. Using Infrared Astronomical Satellite–far infrared (IRAS–FIR) observations, we study the star formation in these systems and find that many systems selected to have post-starburst signatures in their optical spectrum are in fact obscured starbursts. Using SDSS spectroscopy, we study the stationary and outflowing ionized gas. We also detect neutral gas outflows in 40 per cent of the sources with mass outflow rates 10–100 times more massive than in the ionized phase. The mean mass outflow rate and kinetic power of the ionized outflows in our sample ($\dot{M}\sim 1\, \mathrm{M_{\odot }\, yr^{-1}}$, $\dot{E}\sim 10^{41}\, \mathrm{erg\, s}^{-1}$) are larger than those derived for active galaxies of similar AGN luminosity and stellar mass. For the neutral outflow ($\dot{M}\sim 10\, \mathrm{M_{\odot }\, yr^{-1}}$, $\dot{E}\sim 10^{42}\, \mathrm{erg\, s}^{-1}$), their mean is smaller than that observed in (U)LIRGs with and without AGN.

 
more » « less
NSF-PAR ID:
10382039
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
509
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 4457-4479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Radio-loud active galactic nuclei (RLAGNs) are a unique AGN population and were thought to be preferentially associated with supermassive black holes (SMBHs) at low accretion rates. They could impact the host galaxy evolution by expelling cold gas through the jet-mode feedback. In this work, we studied CO(6−5) line emission and continuum emission in a high-redshift radio galaxy, MRC 0152−209, at z = 1.92 using ALMA (Atacama Large Millimeter/submillimeter Array) up to a 0.024″ resolution (corresponding to ∼200 pc at z = 1.92). This system is a starburst major merger comprising two galaxies: the north-west (NW) galaxy hosting the RLAGN with jet kinetic power Ljet ≳ 2 × 1046  erg s−1 and the other galaxy to the south-east (SE). Based on the spectral energy distribution fitting for the entire system (NW+SE galaxies), we find an AGN bolometric luminosity LAGN, bol ∼ 3 × 1046  erg s−1 with a lower limit of ∼0.9 × 1046  erg s−1 for the RLAGN. We estimate the black hole mass through MBH–M⋆ scaling relations and find an Eddington ratio of λEdd ∼ 0.07–4 conservatively by adopting the lower limit of LAGN, bol and considering the dispersion of the scaling relation. These results suggest that the RLAGN is radiatively efficient and the powerful jets could be launched from a super-Eddington accretion disc. ALMA Cycle 6 observations further reveal a massive (${M}_\mathrm{H_2}=(1.1-2.3)\times 10^9\ \rm M_\odot$), compact (∼500 pc), and monopolar molecular outflow perpendicular to the jet axis. The corresponding mass outflow rate ($1200^{+300}_{-300}-2600^{+600}_{-600}\ \mathrm{M_\odot }\ \rm yr^{-1}$) is comparable with the star formation rate of at least $\sim 2100\ \mathrm{M_\odot }\ \rm yr^{-1}$. Depending on the outflowing molecular gas mass, the outflow kinetic power/LAGN, bol ratio of ∼0.008–0.02, and momentum boost factor of ∼3–24 agree with a radiative-mode AGN feedback scenario. On the other hand, the jets can also drive the molecular outflow within its lifetime of ∼2 × 105 yr without additional energy supply from AGN radiation. The jet-mode feedback is then capable of removing all cold gas from the host galaxy through the long-term, episodic launching of jets. Our study reveals a unique object where starburst activity, powerful jets, and rapid BH growth co-exist, which may represent a fundamental stage of AGN-host galaxy co-evolution.

     
    more » « less
  2. ABSTRACT We present the hot molecular and warm ionized gas kinematics for 33 nearby (0.001 ≲ z ≲ 0.056) X-ray selected active galaxies using the H$_2\, 2.1218\, \mu$m and Br γ emission lines observed in the K band with the Gemini near-infrared integral field spectrograph. The observations cover the inner 0.04–2 kpc of each active galactic nucleus at spatial resolutions of 4–250 pc with a velocity resolution of σinst ≈ 20 ${\rm km\, s^{-1}}$. We find that 31 objects (94 per cent) present a kinematically disturbed region (KDR) seen in ionized gas, while such regions are observed in hot molecular gas for 25 galaxies (76 per cent). We interpret the KDR as being due to outflows with masses of 102–107 and 100–104 M⊙ for the ionized and hot molecular gas, respectively. The ranges of mass-outflow rates ($\dot{M}_{\rm out}$) and kinetic power ($\dot{E}_{\rm K}$) of the outflows are 10−3–101 M⊙ yr−1 and ∼1037–1043 erg s−1 for the ionized gas outflows, and 10−5–10−2 M⊙ yr−1 and 1035–1039 erg s−1 for the hot molecular gas outflows. The median coupling efficiency in our sample is $\dot{E}_{\mathrm{K}}/L_{\rm bol}\approx 1.8\times 10^{-3}$ and the estimated momentum fluxes of the outflows suggest they are produced by radiation-pressure in low-density environment, with possible contribution from shocks. 
    more » « less
  3. We report molecular gas observations of IRAS 20100-4156 and IRAS 03158+4227, two local ultraluminous infrared galaxies (ULIRGs) hosting some of the fastest and most massive molecular outflows known. Using ALMA and PdBI observations, we spatially resolve the CO(1-0) emission from the outflowing molecular gas in both and find maximum outflow velocities of $ v_{\rm max} \sim 1600$ and $\sim 1700$ km/s for IRAS 20100-4156 and IRAS 03158+4227, respectively. We find total gas mass outflow rates of $\dot M_{\rm OF} \sim 670$ and $\sim 350$ Msun/yr, respectively, corresponding to molecular gas depletion timescales $\tau^{\rm dep}_{\rm OF} \sim 11$ and $\sim 16$ Myr. This is nearly 3 times shorter than the depletion timescales implied by star formation, $\tau^{\rm dep}_{\rm SFR} \sim 33$ and $\sim 46$ Myr, respectively. To determine the outflow driving mechanism, we compare the starburst ($L_{*}$) and AGN ($L_{\rm AGN}$) luminosities to the outflowing energy and momentum fluxes, using mid-infrared spectral decomposition to discern $L_{\rm AGN}$. Comparison to other molecular outflows in ULIRGs reveals that outflow properties correlate similarly with $L_{*}$ and $L_{\rm IR}$ as with $L_{\rm AGN}$, indicating that AGN luminosity alone may not be a good tracer of feedback strength and that a combination of AGN and starburst activity may be driving the most powerful molecular outflows. We also detect the OH 1.667 GHz maser line from both sources and demonstrate its utility in detecting molecular outflows. 
    more » « less
  4. ABSTRACT

    Powerful outflows are thought to play a critical role in galaxy evolution and black hole growth. We present the first large-scale systematic study of ionized outflows in paired galaxies and post-mergers compared to a robust control sample of isolated galaxies. We isolate the impact of the merger environment to determine if outflow properties depend on merger stage. Our sample contains ∼4000 paired galaxies and ∼250 post-mergers in the local universe (0.02 ≤ z ≤ 0.2) from the Sloan Digital Sky Survey Data Release 7 (SDSS DR 7) matched in stellar mass, redshift, local density of galaxies, and [O iii] λ5007 luminosity to a control sample of isolated galaxies. By fitting the [O iii] λ5007 line, we find ionized outflows in ∼15 per cent of our entire sample. Outflows are much rarer in star-forming galaxies compared to active galactic nuclei (AGNs), and outflow incidence and velocity increase with [O iii] λ5007 luminosity. Outflow incidence is significantly elevated in the optical + mid-infrared selected AGN compared to purely optical AGN; over 60 per cent show outflows at the highest luminosities ($L_{\mathrm{[OIII]~\lambda 5007}}\, \gtrsim$ 1042 erg s−1), suggesting mid-infrared AGN selection favours galaxies with powerful outflows, at least for higher [O iii] λ5007 luminosities. However, we find no statistically significant difference in outflow incidence, velocity, and luminosity in mergers compared to isolated galaxies, and there is no dependence on merger stage. Therefore, while interactions are predicted to drive gas inflows and subsequently trigger nuclear star formation and accretion activity, when the power source of the outflow is controlled for, the merging environment has no further impact on the large-scale ionized outflows as traced by [O iii] λ5007.

     
    more » « less
  5. ABSTRACT

    We study the gas distribution and kinematics of the inner kpc of six moderately luminous (43.43 ≤ log Lbol ≤ 44.83) nearby (0.004 ≤ z ≤ 0.014) Seyfert galaxies observed with the Near-infrared Integral Field Spectrograph (NIFS) in the J ($1.25\,\mu$m) and K ($2.2\,\mu$m) bands. We analyse the most intense emission lines detected on these spectral wavebands: [Fe ii] $1.2570\, \mu$m and Paβ, which trace the ionized gas in the partially and fully ionized regions, and $\mathrm{ H}_2 \ 2.1218\, \mu$m, which traces the hot (∼2000 K) molecular gas. The dominant kinematic component is rotation in the disc of the galaxies, except for the ionized gas in NGC 5899 that shows only weak signatures of a disc component. We find ionized gas outflow in four galaxies, while signatures of H2 outflows are seen in three galaxies. The ionized gas outflows display velocities of a few hundred km s−1, and their mass outflow rates are in the range 0.005–12.49 M⊙ yr−1. Their kinetic powers correspond to 0.005–0.7 per cent of the active galactic nuclei (AGN) bolometric luminosities. Besides rotation and outflows signatures in some cases, the H2 kinematics also reveals inflows in three galaxies. The inflow velocities are 50–80 km s−1 and the mass inflow rates are in the range 1–9 × 10−4 M⊙ yr−1 for hot molecular gas. These inflows might be only the hot skin of the total inflowing gas, which is expected to be dominated by colder gas. The mass inflow rates are lower than the current accretion rates to the AGN, and the ionized outflows are apparently disturbing the gas in the inner kpc.

     
    more » « less