skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Design of experiments for stochastic contextual linear bandits
In the stochastic linear contextual bandit setting there exist several minimax procedures for exploration with policies that are reactive to the data being acquired. In practice, there can be a significant engineering overhead to deploy these algorithms, especially when the dataset is collected in a distributed fashion or when a human in the loop is needed to implement a different policy. Exploring with a single non-reactive policy is beneficial in such cases. Assuming some batch contexts are available, we design a single stochastic policy to collect a good dataset from which a near-optimal policy can be extracted. We present a theoretical analysis as well as numerical experiments on both synthetic and real-world datasets.  more » « less
Award ID(s):
2112926
PAR ID:
10382138
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tauman_Kalai, Yael (Ed.)
    We study the complexity of computing stationary Nash equilibrium (NE) in n-player infinite-horizon general-sum stochastic games. We focus on the problem of computing NE in such stochastic games when each player is restricted to choosing a stationary policy and rewards are discounted. First, we prove that computing such NE is in PPAD (in addition to clearly being PPAD-hard). Second, we consider turn-based specializations of such games where at each state there is at most a single player that can take actions and show that these (seemingly-simpler) games remain PPAD-hard. Third, we show that under further structural assumptions on the rewards computing NE in such turn-based games is possible in polynomial time. Towards achieving these results we establish structural facts about stochastic games of broader utility, including monotonicity of utilities under single-state single-action changes and reductions to settings where each player controls a single state. 
    more » « less
  2. A learner aims to minimize a function f by repeatedly querying a distributed oracle that provides noisy gradient evaluations. At the same time, the learner seeks to hide arg min f from a malicious eavesdropper that observes the learner’s queries. This paper considers the problem of covert or learner-private optimization, where the learner has to dynamically choose between learning and obfuscation by exploiting the stochasticity. The problem of controlling the stochastic gradient algorithm for covert optimization is modeled as a Markov decision process, and we show that the dynamic programming operator has a supermodular structure implying that the optimal policy has a monotone threshold structure. A computationally efficient policy gradient algorithm is proposed to search for the optimal querying policy without knowledge of the transition probabilities. As a practical application, our methods are demonstrated on a hate speech classification task in a federated setting where an eavesdropper can use the optimal weights to generate toxic content, which is more easily misclassified. Numerical results show that when the learner uses the optimal policy, an eavesdropper can only achieve a validation accuracy of 52% with no information and 69% when it has a public dataset with 10% positive samples compared to 83% when the learner employs a greedy policy. 
    more » « less
  3. Larochelle, Hugo; Murray, Naila; Kamath, Gautam; Shah, Nihar B (Ed.)
    Gaussian Mixture Models (GMMs) have been recently proposed for approximating actors in actor-critic reinforcement learning algorithms. Such GMM-based actors are commonly optimized using stochastic policy gradients along with an entropy maximization objective. In contrast to previous work, we define and study deterministic policy gradients for optimiz- ing GMM-based actors. Similar to stochastic gradient approaches, our proposed method, denoted Gaussian Mixture Deterministic Policy Gradient (Gamid-PG), encourages policy entropy maximization. To this end, we define the GMM entropy gradient using Varia- tional Approximation of the KL-divergence between the GMM’s component Gaussians. We compare Gamid-PG with common stochastic policy gradient methods on benchmark dense- reward MuJoCo tasks and sparse-reward Fetch tasks. We observe that Gamid-PG outper- forms stochastic gradient-based methods in 3/6 MuJoCo tasks while performing similarly on the remaining 3 tasks. In the Fetch tasks, Gamid-PG outperforms single-actor determinis- tic gradient-based methods while performing worse than stochastic policy gradient methods. Consequently, we conclude that GMMs optimized using deterministic policy gradients (1) should be favorably considered over stochastic gradients in dense-reward continuous control tasks, and (2) improve upon single-actor deterministic gradients. 
    more » « less
  4. We study the efficient off-policy evaluation of natural stochastic policies, which are defined in terms of deviations from the unknown behaviour policy. This is a departure from the literature on off-policy evaluation that largely consider the evaluation of explicitly specified policies. Crucially, offline reinforcement learning with natural stochastic policies can help alleviate issues of weak overlap, lead to policies that build upon current practice, and improve policies' implementability in practice. Compared with the classic case of a prespecified evaluation policy, when evaluating natural stochastic policies, the efficiency bound, which measures the best-achievable estimation error, is inflated since the evaluation policy itself is unknown. In this paper we derive the efficiency bounds of two major types of natural stochastic policies: tilting policies and modified treatment policies. We then propose efficient nonparametric estimators that attain the efficiency bounds under lax conditions and enjoy a partial double robustness property. 
    more » « less
  5. When visualizing a high-dimensional dataset, dimension reduction techniques are commonly employed which provide a single 2 dimensional view of the data. We describe ENS-t-SNE: an algorithm for Embedding Neighborhoods Simultaneously that generalizes the t-Stochastic Neighborhood Embedding approach. By using different viewpoints in ENS-t-SNE’s 3D embedding, one can visualize different types of clusters within the same high-dimensional dataset. This enables the viewer to see and keep track of the different types of clusters, which is harder to do when providing multiple 2D embeddings, where corresponding points cannot be easily identified. We illustrate the utility of ENS-t-SNE with real-world applications and provide an extensive quantitative evaluation with datasets of different types and sizes. 
    more » « less