skip to main content


Title: Community phylogeny and spatial scale affect phylogenetic diversity metrics in a species‐rich rainforest in Borneo
Abstract

Community phylogenetic analysis is an effective approach to understanding the process of community formation. The phylogenetic tree of the species pool is reconstructed in the first step, and the phylogenetic tree obtained in the second step is used to analyze phylogenetic diversity. Sythetic trees have often been used in the construction of phylogenentic trees; however, in tropical rainforests with many closely related species, synthetic trees contain many unresolved nodes, which may affect the results of phylogenetic structure analysis. Here, we constructed a phylogenetic tree using DNA barcode sequences (rbcL,matK,trnH‐psbA) for 737 tree species from the rainforests of Borneo, which have a high‐species diversity and many closely related species. The phylogenetic tree had fewer polytomies and more branch length variations than the Phylocom synthetic trees. Comparison of community phylogenetic analyses indicated that values of the standardized effect size of mean pairwise distance (SES–MPD) were highly correlated between Phylocom and DNA barcode trees, but less so for the standardized effect size of mean nearest taxon distance (SES–MNTD), suggesting that caution is needed when using synthetic trees for communities containing many congeneric species, especially when using SES–MNTD. Simulation analysis suggested that spatial dependence on phylogenetic diversity is related to the phylogenetic signal of the species' habitat niche and the spatial structure of habitat, indicating the importance of detailed phylogeny in understanding community assembly processes.

 
more » « less
NSF-PAR ID:
10382219
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
12
Issue:
11
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Habitat alteration and destruction are a primary driver of biodiversity loss. There is a plethora of research documenting similarly strong patterns of decline across ecosystem types and spatial scales. However, evolutionary dimensions remain largely unexplored in many systems. For example, little is known about how habitat alteration/loss can lead to phylogenetic deconstruction of ecological assemblages at the local level. That is, while species loss is evident, are some lineages favored over others? Using a long-term dataset of a globally, ecologically important guild of invertebrate consumers, stream leaf “shredders,” we created a phylogenetic tree of the taxa in the regional species pool, calculated mean phylogenetic distinctiveness for > 1000 communities spanning > 10 y period, and related species richness, phylogenetic diversity and distinctiveness to watershed-scale impervious cover. Using a combination of changepoint and compositional analyses, we learned that increasing impervious cover produced marked reductions in all three measures of diversity, and in particular, aid in understanding both phylogenetic diversity and average assemblage phylogenetic distinctiveness. Our findings suggest that, not only are species lost when there is an increase in watershed urbanization, as other studies have demonstrated, but that those lost are members of more distinct lineages relative to the community as a whole. 
    more » « less
  2. Abstract

    A major challenge remains to understand the relative contributions of history, dispersal, and environmental filtering to the assembly of hyperdiverse communities across spatial scales. Here, we examine the extent to which biogeographical history and habitat specialization have generated turnover among and within lineages of Amazonian trees across broad geographic and environmental gradients. We replicated standardized tree inventories in 102 0.1‐ha plots located in two distant regions—the western Amazon and the eastern Guiana shield. Within each region, we used a nested design to replicate plots on contrasted habitats: white‐sand, terra firme, and seasonally flooded forests. Our plot network encompassed 26,386 trees that together represented 2,745 distinct taxa, which we standardized across all plots and regions. We combined taxonomic and phylogenetic data with detailed soil measurements and climatic data to: (1) test whether patterns of taxonomic and phylogenetic composition are consistent with recent or historical processes, (2) disentangle the relative effects of habitat, environment, and geographic distance on taxonomic and phylogenetic turnover among plots, and (3) contrast the proportion of habitat specialists among species from each region. We found substantial species turnover between Peru and French Guiana, with only 8.8% of species shared across regions; genus composition remained differentiated across habitats and regions, whereas turnover at higher taxonomic levels (family, order) was much lower. Species turnover across plots was explained primarily by regions, but also substantially by habitat differences and to a lesser extent by spatial distance within regions. Conversely, the composition of higher taxonomic levels was better explained by habitats (especially comparing white‐sand forests to other habitats) than spatial distance. White‐sand forests harbored most of the habitat specialists in both regions, with stronger habitat specialization in Peru than in French Guiana. Our results suggest that recent diversification events have resulted in extremely high turnover in species and genus composition with relatively little change in the composition of higher lineages. Our results also emphasize the contributions of rare habitats, such as white‐sand forests, to the extraordinary diversity of the Amazon and underline their importance as conservation priorities.

     
    more » « less
  3. Abstract

    The plant microbiome can affect host function in many ways and characterizing the ecological factors that shape endophytic (microbes living inside host plant tissues) community diversity is a key step in understanding the impacts of environmental change on these communities. Phylogenetic relatedness among members of a community offers a way of quantifying phylogenetic diversity of a community and can provide insight into the ecological factors that shape endophyte microbiomes. We examined the effects of experimental nutrient addition and herbivory exclusion on the phylogenetic diversity of foliar fungal endophyte communities of the grass speciesAndropogon gerardiiat four sites in the Great Plains of the central USA. Using amplicon sequencing, we characterized the effects of fertilization and herbivory on fungal community phylogenetic diversity at spatial scales that spanned within‐host to between sites across the Great Plains. Despite increasing fungal diversity and richness, at larger spatial scales, fungal microbiomes were composed of taxa showing random phylogenetic associations. Phylogenetic diversity did not differ systematically when summed across increasing spatial scales from a few meters within plots to hundreds of kilometers among sites. We observed substantial shifts in composition across sites, demonstrating distinct but similarly diverse fungal communities were maintained within sites across the region. In contrast, at the scale of within leaves, fungal communities tended to be comprised of closely related taxa regardless of the environment, but there were no shifts in phylogenetic composition among communities. We also found that nutrient addition (fertilization) and herbivory have varying effects at different sites. These results suggest that the direction and magnitude of the outcomes of environmental modifications likely depend on the spatial scale considered, and can also be constrained by regional site differences in microbial diversity and composition.

     
    more » « less
  4. Abstract

    Understanding how evolutionary constraints shape the elevational distributions of tree lineages provides valuable insight into the future of tropical montane forests under global change. With narrow elevational ranges, high taxonomic turnover, frequent habitat specialization, and exceptional levels of endemism, tropical montane forests and trees are predicted to be highly sensitive to environmental change. Using plot census data from a gradient traversing > 3,000 m in elevation on the Amazonian flank of the Peruvian Andes, we employ phylogenetic approaches to assess the influence of evolutionary heritage on distribution trends of trees at the genus‐level. We find that closely related lineages tend to occur at similar mean elevations, with sister genera pairs occurring a mean 254 m in elevation closer to each other than the mean elevational difference between non‐sister genera pairs. We also demonstrate phylogenetic clustering both above and below 1,750 m a.s.l, corresponding roughly to the cloud‐base ecotone. Belying these general trends, some lineages occur across many different elevations. However, these highly plastic lineages are not phylogenetically clustered. Overall, our findings suggest that tropical montane forests are home to unique tree lineage diversity, constrained by their evolutionary heritage and vulnerable to substantial losses under environmental changes, such as rising temperatures or an upward shift of the cloud‐base.

     
    more » « less
  5. Sustainable cities depend on urban forests. City trees—pillars of urban forests—improve our health, clean the air, store CO2, and cool local temperatures. Comparatively less is known about city tree communities as ecosystems, particularly regarding spatial composition, species diversity, tree health, and the abundance of introduced species. Here, we assembled and standardized a new dataset ofN= 5,660,237 trees from 63 of the largest US cities with detailed information on location, health, species, and whether a species is introduced or naturally occurring (i.e., “native”). We further designed new tools to analyze spatial clustering and the abundance of introduced species. We show that trees significantly cluster by species in 98% of cities, potentially increasing pest vulnerability (even in species-diverse cities). Further, introduced species significantly homogenize tree communities across cities, while naturally occurring trees (i.e., “native” trees) comprise 0.51–87.4% (median = 45.6%) of city tree populations. Introduced species are more common in drier cities, and climate also shapes tree species diversity across urban forests. Parks have greater tree species diversity than urban settings. Compared to past work which focused on canopy cover and species richness, we show the importance of analyzing spatial composition and introduced species in urban ecosystems (and we develop new tools and datasets to do so). Future work could analyze city trees alongside sociodemographic variables or bird, insect, and plant diversity (e.g., from citizen-science initiatives). With these tools, we may evaluate existing city trees in new, nuanced ways and design future plantings to maximize resistance to pests and climate change. We depend on city trees.

     
    more » « less