Herbarium sheets present a unique view of the world's botanical history, evolution, and diversity. This makes them an all-important data source for botanical research. With the increased digitisation of herbaria worldwide and the advances in the fine-grained classification domain that can facilitate automatic identification of herbarium specimens, there are a lot of opportunities for supporting research in this field. However, existing datasets are either too small, or not diverse enough, in terms of represented taxa, geographic distribution or host institutions. Furthermore, aggregating multiple datasets is difficult as taxa exist under a multitude of different names and the taxonomy requires alignment to a common reference. We present the Herbarium Half-Earth dataset, the largest and most diverse dataset of herbarium specimens to date for automatic taxon recognition. https://doi.org/10.48550/arXiv.2105.13808 
                        more » 
                        « less   
                    
                            
                            The Herbarium 2021 Half–Earth Challenge Dataset and Machine Learning Competition
                        
                    
    
            Herbarium sheets present a unique view of the world's botanical history, evolution, and biodiversity. This makes them an all–important data source for botanical research. With the increased digitization of herbaria worldwide and advances in the domain of fine–grained visual classification which can facilitate automatic identification of herbarium specimen images, there are many opportunities for supporting and expanding research in this field. However, existing datasets are either too small, or not diverse enough, in terms of represented taxa, geographic distribution, and imaging protocols. Furthermore, aggregating datasets is difficult as taxa are recognized under a multitude of names and must be aligned to a common reference. We introduce the Herbarium 2021 Half–Earth dataset: the largest and most diverse dataset of herbarium specimen images, to date, for automatic taxon recognition. We also present the results of the Herbarium 2021 Half–Earth challenge, a competition that was part of the Eighth Workshop on Fine-Grained Visual Categorization (FGVC8) and hosted by Kaggle to encourage the development of models to automatically identify taxa from herbarium sheet images. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2054684
- PAR ID:
- 10382227
- Date Published:
- Journal Name:
- Frontiers in Plant Science
- Volume:
- 12
- ISSN:
- 1664-462X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Machine learning (ML) has great potential to drive scientific discovery by harvesting data from images of herbarium specimens—preserved plant material curated in natural history collections—but ML techniques have only recently been applied to this rich resource. ML has particularly strong prospects for the study of plant phenological events such as growth and reproduction. As a major indicator of climate change, driver of ecological processes, and critical determinant of plant fitness, plant phenology is an important frontier for the application of ML techniques for science and society. In the present article, we describe a generalized, modular ML workflow for extracting phenological data from images of herbarium specimens, and we discuss the advantages, limitations, and potential future improvements of this workflow. Strategic research and investment in specimen-based ML methods, along with the aggregation of herbarium specimen data, may give rise to a better understanding of life on Earth.more » « less
- 
            The availability of large datasets of organism images combined with advances in artificial intelligence (AI) has significantly enhanced the study of organisms through images, unveiling biodiversity patterns and macro-evolutionary trends. However, existing machine learning (ML)-ready organism datasets have several limitations. First, these datasets often focus on species classification only, overlooking tasks involving visual traits of organisms. Second, they lack detailed visual trait annotations, like pixel-level segmentation, that are crucial for in-depth biological studies. Third, these datasets predominantly feature organisms in their natural habitats, posing challenges for aquatic species like fish, where underwater images often suffer from poor visual clarity, obscuring critical biological traits. This gap hampers the study of aquatic biodiversity patterns which is necessary for the assessment of climate change impacts, and evolutionary research on aquatic species morphology. To address this, we introduce the Fish-Visual Trait Analysis (Fish-Vista) dataset—a large, annotated collection of about 80K fish images spanning 3000 different species, supporting several challenging and biologically relevant tasks including species classification, trait identification, and trait segmentation. These images have been curated through a sophisticated data processing pipeline applied to a cumulative set of images obtained from various museum collections. Fish-Vista ensures that visual traits of images are clearly visible, and provides fine-grained labels of various visual traits present in each image. It also offers pixel-level annotations of 9 different traits for about 7000 fish images, facilitating additional trait segmentation and localization tasks. The ultimate goal of Fish-Vista is to provide a clean, carefully curated, high-resolution dataset that can serve as a foundation for accelerating biological discoveries using advances in AI. Finally, we provide a comprehensive analysis of state-of-the-art deep learning techniques on Fish-Vista.more » « less
- 
            Fine-grained visual reasoning tasks in multi-agent environments such as event prediction, agent type identification, or missing data imputation are important for multiple applications (e.g., autonomous surveillance over sensor networks and subtasks for reinforcement learning (RL)). StarCraft II game replays encode intelligent (and adversarial) multi-agent behavior and could provide a testbed for these tasks; however, extracting simple and standardized representations for prototyping these tasks is laborious and hinders reproducibility. In contrast, MNIST and CIFAR10, despite their extreme simplicity, have enabled rapid prototyping and reproducibility of ML methods. Following the simplicity of these datasets, we construct a benchmark fine-grained multi-agent categorization dataset based on StarCraft II replays that exhibit complex multi-agent behaviors, while still being as easy to use as MNIST and CIFAR10. Specifically, we carefully summarize a window of 255 consecutive game states to create 3.6 million summary images from 60,000 replays, including all relevant metadata such as game outcome and player races. We develop three formats of decreasing complexity: Hyperspectral images that include one channel for every unit type (similar to multispectral geospatial images), RGB images that mimic CIFAR10, and grayscale images that mimic MNIST. We show how this dataset can be used for prototyping fine-grained multi-agent categorization methods. All datasets, code for extraction, and code for dataset loading can be found at https://starcraftdata.davidinouye.com/.</p>more » « less
- 
            While the community has seen many advances in recent years to address the challenging problem of Fine-grained Visual Categorization (FGVC), progress seems to be slowing—new state-of-the-art methods often distinguish themselves by improving top-1 accuracy by mere tenths of a percent. However, across all of the now-standard FGVC datasets, there remain sizeable portions of the test data that none of the current state-of-the-art (SOTA) models can successfully predict. This paper provides a framework for identifying and studying the errors that current methods make across diverse fine-grained datasets. Three models of difficulty—Prediction Overlap, Prediction Rank and Pair-wise Class Confusion—are employed to highlight the most challenging sets of images and classes. Extensive experiments apply a range of standard and SOTA methods, evaluating them on multiple FGVC domains and datasets. Insights acquired from coupling these difficulty paradigms with the careful analysis of experimental results suggest crucial areas for future FGVC research, focusing critically on the set of elusive images that none of the current models can correctly classify. Code is available at catalys1.github.io/elusive-images-fgvc.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    