skip to main content


Title: Comparison of CS Middle-School Instruction during Pre-Pandemic, Early-Pandemic and Mid-Pandemic School Years
In 2020, the world confronted an unprecedented event affecting education globally: COVID-19. Events that disrupt education are not new; Homelessness or trauma negatively impact education at an individual level, whereas war stops education completely. This event is unique in that it caused the cessation of in-person instruction for all but with a rapid transition to remote instruction. In this study, we explore how the COVID-19 pandemic affected instruction of Scratch Encore Curriculum, a Scratch curriculum typ- ically used in middle grades with students between 10-14 years old. We analyzed a variety of data sources, including partner classroom- level data as well as anonymous download data. We found that instruction halted abruptly in the United States at the beginning of the March lockdown, with no further instruction that spring. With the introduction of online instructional materials, instruction resumed to normal levels during the 2020-21 school year (which was remote instruction for much of the year). In addition, students completed projects with similar accuracy and completeness during remote instruction as compared with in-person instruction prior to the pandemic.  more » « less
Award ID(s):
1738758
NSF-PAR ID:
10382319
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ICER 2022
Volume:
1
Page Range / eLocation ID:
282 to 293
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The coronavirus (COVID-19) pandemic forced a rapid transition of K-16 education to remote and online learning in the final quarter of the 2019–2020 school year. The disruption was extreme for all teachers in K-12 but particularly for teachers involved in pilot programs, such as the NSF-funded Engineering for Us All (e4usa) project. This paper reports the key findings obtained through systematic data collection from a pilot cohort of high school teachers who adapted a brand-new engineering curriculum during the COVID-19 pandemic, students who experienced the adapted curriculum, and a new cohort of teachers who were tasked with teaching the updated curriculum. 
    more » « less
  2. Marshall, Pamela Ann (Ed.)
    ABSTRACT The initial phase of the COVID-19 pandemic changed the nature of course delivery from largely in-person to exclusively remote, thus disrupting the well-established pedagogy of the Genomics Education Partnership (GEP; https://www.thegep.org ). However, our web-based research adapted well to the remote learning environment. As usual, students who engaged in the GEP’s Course-based Undergraduate Research Experience (CURE) received digital projects based on genetic information within assembled Drosophila genomes. Adaptations for remote implementation included moving new member faculty training and peer Teaching Assistant office hours from in-person to online. Surprisingly, our faculty membership significantly increased and, hence, the number of supported students. Furthermore, despite the mostly virtual instruction of the 2020–2021 academic year, there was no significant decline in student learning nor attitudes. Based on successfully expanding the GEP CURE within a virtual learning environment, we provide four strategic lessons we infer toward democratizing science education. First, it appears that increasing access to scientific research and professional development opportunities by supporting virtual, cost-free attendance at national conferences attracts more faculty members to educational initiatives. Second, we observed that transitioning new member training to an online platform removed geographical barriers, reducing time and travel demands, and increased access for diverse faculty to join. Third, developing a Virtual Teaching Assistant program increased the availability of peer support, thereby improving the opportunities for student success. Finally, increasing access to web-based technology is critical for providing equitable opportunities for marginalized students to fully participate in research courses. Online CUREs have great potential for democratizing science education. 
    more » « less
  3. null (Ed.)
    This paper is based on a series of semi-structured, qualitative interviews that were conducted with students, by an undergraduate student and lead author of this paper, that focused on their experiences with educational technologies and online teaching pedagogy in the wake of the COVID-19 pandemic. As U.S. educators scrambled to adapt to online course delivery modes as a result of the first wave of the pandemic in the spring 2020 semester, those in the educational technology and online learning community saw the potential of this movement to vastly accelerate the implementation of online systems in higher education. A shift that may have taken 20 years to accomplish was implemented in two waves, first with the immediate forced shift to online learning in March 2020; and second, a less immediate shift to hybrid and online instruction designed to accommodate the different geographic variation in COVID-19 intensity, along with varied political and institutional ecologies surrounding online versus in-person instruction for the 2020-2021 academic year. With all of the rapid changes that were occurring during the spring of 2020, we wanted to investigate how students experienced and perceived faculty use of technology during this particular moment in time. This study documents this transition through the eyes of undergraduate students, and demonstrates the varied ways in which faculty navigated the transition to online learning. According to our interviewees, some faculty were thoughtful and competent and provided a supportive environment that paid attention to a students’ capacity for online learning, rather than maintaining traditional instructional practices. Others relied on practices from in-person instruction that were familiar, but appeared to be nervous in the new online teaching environment. Then there were those who seemed occupied by other concerns, where a focus on effective undergraduate teaching remained limited to begin with, and their approach to online instruction was driven by convenience. Our qualitative data clearly reveals that the ways in which faculty conducted their online courses directly impacted student learning experiences. In this study, we set out to document both the faculty instructional strategies in a hybrid/online environment and student accounts of those choices and their resulting experiences. While we continue to analyze this unique data set on this moment of transition in engineering education, we hope that this paper will also lead to policy recommendations regarding faculty adaptations to online instruction in general. We include some initial thoughts and recommendations below. 
    more » « less
  4. null (Ed.)
    COVID-19 has altered the landscape of teaching and learning. For those in in-service teacher education, workshops have been suspended causing programs to adapt their professional development to a virtual space to avoid indefinite postponement or cancellation. This paradigm shift in the way we conduct learning experiences creates several logistical and pedagogical challenges but also presents an important opportunity to conduct research about how learning happens in these new environments. This paper describes the approach we took to conduct research in a series of virtual workshops aimed at teaching rural elementary teachers about engineering practices and how to teach a unit from an engineering curriculum. Our work explores how engineering concepts and practices are socially constructed through interactions with teachers, students, and artifacts. This approach, called interactional ethnography has been used by the authors and others to learn about engineering teaching and learning in precollege classrooms. The approach relies on collecting data during instruction, such as video and audio recordings, interviews, and artifacts such as journal entries and photos of physical designs. Findings are triangulated by analyzing these data sources. This methodology was going to be applied in an in-person engineering education workshop for rural elementary teachers, however the pandemic forced us to conduct the workshops remotely. Teachers, working in pairs, were sent workshop supplies, and worked together during the training series that took place over Zoom over four days for four hours each session. The paper describes how we collected video and audio of teachers and the facilitators both in whole group and in breakout rooms. Class materials and submissions of photos and evaluations were managed using Google Classroom. Teachers took photos of their work and scanned written materials and submitted them all by email. Slide decks were shared by the users and their group responses were collected in real time. Workshop evaluations were collected after each meeting using Google Forms. Evaluation data suggest that the teachers were engaged by the experience, learned significantly about engineering concepts and the knowledge-producing practices of engineers, and feel confident about applying engineering activities in their classrooms. This methodology should be of interest to the membership for three distinct reasons. First, remote instruction is a reality in the near-term but will likely persist in some form. Although many of us prefer to teach in person, remote learning allows us to reach many more participants, including those living in remote and rural areas who cannot easily attend in-person sessions with engineering educators, so it benefits the field to learn how to teach effectively in this way. Second, it describes an emerging approach to engineering education research. Interactional ethnography has been applied in precollege classrooms, but this paper demonstrates how it can also be used in teacher professional development contexts. Third, based on our application of interactional ethnography to an education setting, readers will learn specifically about how to use online collaborative software and how to collect and organize data sources for research purposes. 
    more » « less
  5. Abstract

    Some science education researchers have presented either isolated findings on specific points in time during the pandemic or non-empirical insights or suggestions for how teachers, district leaders, policymakers, and others should take up the learnings from the pandemic to move science education forward. However, there are few studies published to date that provide robust and longitudinal empirical data on what science instruction looked like throughout the pandemic and the magnitude of the impacts of the pandemic on science instruction when compared to pre-pandemic science teaching and learning. We conducted a primarily survey-based study on science instruction and enactment of the Next Generation Science Standards (NGSS) in K-8 classrooms throughout the COVID-19 pandemic. This analysis also incorporates a longitudinal dataset from grade 6–8 teachers across California on their NGSS instruction prior to and throughout the first year of the pandemic, providing insight on instruction over multiple years before and throughout distance learning. Our findings highlight the challenges that teachers and students faced during the pandemic, as well as the significant impacts that distance learning appeared to have on science instruction and teachers’ ability to provide NGSS-aligned instruction. However, we also found that a year after the initial school closures, teachers’ science instruction began to show improvements both in the frequency of science instruction (how often they were able to provide science instruction through distance learning) and the quality of science instruction (how often teachers were able to provide instruction that was aligned with the goals of the NGSS). Implications of this work are far reaching and may impact teachers, students, administrators, policymakers, professional learning providers, and curriculum developers regardless of whether science instruction occurs through distance learning or in-person moving forward.

     
    more » « less