skip to main content


Title: Lemna as a Sustainable, Highly Nutritious Crop: Nutrient Production in Different Light Environments
Development of a nutritious, sustainable food source is essential to address worldwide deficiencies in human micronutrients. Aquatic floating plants (e.g., species in the family Lemnaceae, duckweeds) are uniquely suited for area-efficient productivity with exceptionally high rates of growth and nutritional quality. Here, we provide an overview of the role of dietary micronutrients (with a focus on carotenoids) in human health and the promise of Lemnaceae as sustainable crops. We examine the effect of growth light environment on plant biomass production and levels of the carotenoids zeaxanthin, lutein, and pro-vitamin A (β-carotene), as well as the antioxidant vitamin E (α-tocopherol), and protein. Data on each of these nutrients are reported on a plant dry biomass basis (as relevant for nutrition) as well as relative to the required input of light energy (as relevant to resource-use efficiency).  more » « less
Award ID(s):
1907338
NSF-PAR ID:
10382321
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Nutraceuticals
Volume:
2
Issue:
4
ISSN:
1661-3821
Page Range / eLocation ID:
350 to 364
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This review focuses on recently characterized traits of the aquatic floating plant Lemna with an emphasis on its capacity to combine rapid growth with the accumulation of high levels of the essential human micronutrient zeaxanthin due to an unusual pigment composition not seen in other fast-growing plants. In addition, Lemna’s response to elevated CO2 was evaluated in the context of the source–sink balance between plant sugar production and consumption. These and other traits of Lemnaceae are compared with those of other floating aquatic plants as well as terrestrial plants adapted to different environments. It was concluded that the unique features of aquatic plants reflect adaptations to the freshwater environment, including rapid growth, high productivity, and exceptionally strong accumulation of high-quality vegetative storage protein and human antioxidant micronutrients. It was further concluded that the insensitivity of growth rate to environmental conditions and plant source–sink imbalance may allow duckweeds to take advantage of elevated atmospheric CO2 levels via particularly strong stimulation of biomass production and only minor declines in the growth of new tissue. It is proposed that declines in nutritional quality under elevated CO2 (due to regulatory adjustments in photosynthetic metabolism) may be mitigated by plant–microbe interaction, for which duckweeds have a high propensity. 
    more » « less
  2. The inadequacy of micronutrients, namely essential vitamins and minerals in the human diet, manifests a wide range of moderate to serious health concerns collectively known as micronutrient malnutrition. It affects half of the global population, and food-based strategies such as balanced diet, supplementation and food fortification are effective. The balanced diet and dietary supplementation are desirable and sustainable; however, their efficacy is uncertain due to the required demands to improve dietary habits. Interestingly, food fortification – addition of micronutrients to processed foods - supplies micronutrients without the need to alter eating habits and unquestionably stands out as a systematic approach to moderate the statistical rise in micronutrient malnutrition. On the other hand, biofortification - plant breeding and/or genetic engineering - is a convenient and sustainable strategy with myriad possibilities to augment micronutrients status that could endure through generations. These approaches coupled with meticulously organized innovative policies and a competent food value chain will indeed aid in addressing the micronutrient deficiency toward building a productive and efficient generation. 
    more » « less
  3. null (Ed.)
    Nanofertilizer application is becoming a sustainable alternative for plants micronutrients supply. Seed nutrient priming before seeding reduces non- target dispersion; although, applying nanofertilizer in correct concentration must be narrowly chosen to prevent germination and development issues. Here, we evaluated corn seedlings development and germination after seed priming with Mn3O4 nanoparticle (NP), Mn3O4 bulk and MnCl2. Sterile seeds were soaked for 8hours in priming solutions of 0, 20, 40, 80 and 160mg L1 for each Mn sources. The seeds vigor and germination were evaluated after 7 days on germination paper. Root, shoot and total lengths were measured as well as root, shoot and total dry biomass. Compared to the control, the Mn3O4 NP and Mn3O4 bulk promoted beneficial effects. Mn3O4 NP seed-priming exhibited a concentration dependent profile in improving seedling growth, with greatest benefit around 20mg L1, pro- viding higher germination, vigor, dry biomass and length than control and the other source tested. Particle size plays an important role in the reactiv- ity of Mn3O4 NP. On the other hand, seeds primed with soluble source did not differ from the control. These findings support NP-seed priming as an alternative to delivery micronutrients. 
    more » « less
  4. Abstract

    The impacts of altered biogeochemical cycles on ecological systems are likely to vary with trophic level. Predicting how these changes will affect ecological food webs is further complicated by human activities, which are simultaneously altering the availability of macronutrients like nitrogen (N) and phosphorus (P), and micronutrients such as sodium (Na). Here we contrast three hypotheses that predict how increasing nutrient availability will shape grassland food webs. We conducted a distributed factorial fertilization experiment (N and P crossed with NaCl) across four North American grasslands, quantifying the responses of aboveground plant biomass and volume, plant tissue and soil elemental concentrations, as well as the abundance of five arthropod functional groups. Fertilization with N and P increased plant biomass and foliar N and P concentrations in grasses but not forbs. Fertilization with Na had no effect on plant biomass but increased foliar Na concentrations. Consistent with the nutrient limitation hypothesis, we found strong evidence of nutrient limitation for insect herbivores across the four sites with sucking (phloem and xylem feeding) herbivores increasing in abundance with NP fertilization and chewing herbivores increasing in response to both Na and NP fertilization, and a trend for increased response of arthropods to lower plant nutrient availability. We found no evidence for an interaction of NaCl and NP on arthropod abundance as predicted by the serial colimitation hypothesis. Finally, consistent with the ecosystem size hypothesis, predator and parasitoid abundances increased with plant volume, but not fertilization. Our results suggest these functional group‐specific responses to changes in plant nutrients and structure are key to predicting the future of grassland food webs in an era with increasing use of N and P fertilizers, and increasing terrestrial inputs of Na from road salt, saline irrigation water, and aerosols due to rising sea levels.

     
    more » « less
  5. Abstract

    Foliar fungal endophytes are ubiquitous plant symbionts that can affect plant growth and reproduction via their roles in pathogen and stress tolerance, as well as plant hormonal signaling. Despite their importance, we have a limited understanding of how foliar fungal endophytes respond to varying environmental conditions such as nutrient inputs. The responses of foliar fungal endophyte communities to increased nutrient deposition may be mediated by the simultaneous effects on within‐host competition as well as the indirect impacts of altered host population size, plant productivity, and plant community diversity and composition. Here, we leveraged a 7‐yr experiment manipulating nitrogen, phosphorus, potassium, and micronutrients to investigate how nutrient‐induced changes to plant diversity, plant productivity, and plant community composition relate to changes in foliar fungal endophyte diversity and richness in a focal native grass host,Andropogon gerardii. We found limited evidence of direct effects of nutrients on endophyte diversity. Instead, the effects of nutrients on endophyte diversity appeared to be mediated by accumulation of plant litter and plant diversity loss. Specifically, nitrogen addition is associated with a 40% decrease in plant diversity and an 11% decrease in endophyte richness. Although nitrogen, phosphorus, and potassium addition increased aboveground live biomass and decreased relativeAndropogoncover, endophyte diversity did not covary with live plant biomass orAndropogoncover. Our results suggest that fungal endophyte diversity within this focal host is determined in part by the diversity of the surrounding plant community and its potential impact on immigrant propagules and dispersal dynamics. Our results suggest that elemental nutrients reduce endophyte diversity indirectly via impacts on the local plant community, not direct response to nutrient addition. Thus, the effects of global change drivers, such as nutrient deposition, on characteristics of host populations and the diversity of their local communities are important for predicting the response of symbiont communities in a changing global environment.

     
    more » « less