skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: False discovery rate control in genome-wide association studies with population structure
We present a comprehensive statistical framework to analyze data from genome-wide association studies of polygenic traits, producing interpretable findings while controlling the false discovery rate. In contrast with standard approaches, our method can leverage sophisticated multivariate algorithms but makes no parametric assumptions about the unknown relation between genotypes and phenotype. Instead, we recognize that genotypes can be considered as a random sample from an appropriate model, encapsulating our knowledge of genetic inheritance and human populations. This allows the generation of imperfect copies (knockoffs) of these variables that serve as ideal negative controls, correcting for linkage disequilibrium and accounting for unknown population structure, which may be due to diverse ancestries or familial relatedness. The validity and effectiveness of our method are demonstrated by extensive simulations and by applications to the UK Biobank data. These analyses confirm our method is powerful relative to state-of-the-art alternatives, while comparisons with other studies validate most of our discoveries. Finally, fast software is made available for researchers to analyze Biobank-scale datasets.  more » « less
Award ID(s):
1934578
PAR ID:
10382344
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
40
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SNP heritability, the proportion of phenotypic variation explained by genotyped SNPs, is an important parameter in understanding the genetic architecture underlying various diseases and traits. Methods that aim to estimate SNP heritability from individual genotype and phenotype data are limited by their ability to scale to Biobank-scale data sets and by the restrictions in access to individual-level data. These limitations have motivated the development of methods that only require summary statistics. Although the availability of publicly accessible summary statistics makes them widely applicable, these methods lack the accuracy of methods that utilize individual genotypes. Here we present a SUMmary-statistics-based Randomized Haseman-Elston regression (SUM-RHE), a method that can estimate the SNP heritability of complex phenotypes with accuracies comparable to approaches that require individual genotypes, while exclusively relying on summary statistics. SUM-RHE employs Genome-Wide Association Study (GWAS) summary statistics and statistics obtained on a reference population, which can be efficiently estimated and readily shared for public use. Our results demonstrate that SUM-RHE obtains estimates of SNP heritability that are substantially more accurate compared with other summary statistic methods and on par with methods that rely on individual-level data. 
    more » « less
  2. Abstract In the statistical analysis of genome-wide association data, it is challenging to precisely localize the variants that affect complex traits, due to linkage disequilibrium, and to maximize power while limiting spurious findings. Here we report onKnockoffZoom: a flexible method that localizes causal variants at multiple resolutions by testing the conditional associations of genetic segments of decreasing width, while provably controlling the false discovery rate. Our method utilizes artificial genotypes as negative controls and is equally valid for quantitative and binary phenotypes, without requiring any assumptions about their genetic architectures. Instead, we rely on well-established genetic models of linkage disequilibrium. We demonstrate that our method can detect more associations than mixed effects models and achieve fine-mapping precision, at comparable computational cost. Lastly, we applyKnockoffZoomto data from 350k subjects in the UK Biobank and report many new findings. 
    more » « less
  3. Biobanks linked to electronic health records provide rich resources for health‐related research. With improvements in administrative and informatics infrastructure, the availability and utility of data from biobanks have dramatically increased. In this paper, we first aim to characterize the current landscape of available biobanks and to describe specific biobanks, including their place of origin, size, and data types. The development and accessibility of large‐scale biorepositories provide the opportunity to accelerate agnostic searches, expedite discoveries, and conduct hypothesis‐generating studies of disease‐treatment, disease‐exposure, and disease‐gene associations. Rather than designing and implementing a single study focused on a few targeted hypotheses, researchers can potentially use biobanks' existing resources to answer an expanded selection of exploratory questions as quickly as they can analyze them. However, there are many obvious and subtle challenges with the design and analysis of biobank‐based studies. Our second aim is to discuss statistical issues related to biobank research such as study design, sampling strategy, phenotype identification, and missing data. We focus our discussion on biobanks that are linked to electronic health records. Some of the analytic issues are illustrated using data from the Michigan Genomics Initiative and UK Biobank, two biobanks with two different recruitment mechanisms. We summarize the current body of literature for addressing these challenges and discuss some standing open problems. This work complements and extends recent reviews about biobank‐based research and serves as a resource catalog with analytical and practical guidance for statisticians, epidemiologists, and other medical researchers pursuing research using biobanks. 
    more » « less
  4. Linear mixed models (LMMs) can be applied in the meta-analyses of responses from individuals across multiple contexts, increasing power to detect associations while accounting for confounding effects arising from within-individual variation. However, traditional approaches to fitting these models can be computationally intractable. Here, we describe an efficient and exact method for fitting a multiple-context linear mixed model. Whereas existing exact methods may be cubic in their time complexity with respect to the number of individuals, our approach for multiple-context LMMs (mcLMM) is linear. These improvements allow for large-scale analyses requiring computing time and memory magnitudes of order less than existing methods. As examples, we apply our approach to identify expression quantitative trait loci from large-scale gene expression data measured across multiple tissues as well as joint analyses of multiple phenotypes in genomewide association studies at biobank scale. 
    more » « less
  5. Alessandra Carbone, Mohammed El-Kebir (Ed.)
    Linear mixed models (LMMs) can be applied in the meta-analyses of responses from individuals across multiple contexts, increasing power to detect associations while accounting for confounding effects arising from within-individual variation. However, traditional approaches to fitting these models can be computationally intractable. Here, we describe an efficient and exact method for fitting a multiple-context linear mixed model. Whereas existing exact methods may be cubic in their time complexity with respect to the number of individuals, our approach for multiple-context LMMs (mcLMM) is linear. These improvements allow for large-scale analyses requiring computing time and memory magnitudes of order less than existing methods. As examples, we apply our approach to identify expression quantitative trait loci from large-scale gene expression data measured across multiple tissues as well as joint analyses of multiple phenotypes in genome-wide association studies at biobank scale. 
    more » « less