skip to main content


Title: Engineering surface strain for site-selective island growth of Au on anisotropic Au nanostructures
Controlled growth of islands on plasmonic metal nanoparticles represents a novel strategy in creating unique morphologies that are difficult to achieve by conventional colloidal synthesis processes, where the nanoparticle morphologies are typically determined by the preferential development of certain crystal facets. This work exploits an effective surface-engineering strategy for site-selective island growth of Au on anisotropic Au nanostructures. Selective ligand modification is first employed to direct the site-selective deposition of a thin transition layer of a secondary metal, e.g., Pd, which has a considerable lattice mismatch with Au. The selective deposition of Pd on the original seeds produces a high contrast in the surface strain that guides the subsequent site-selective growth of Au islands. This strategy proves effective in not only inducing the island growth of Au on Au nanostructures but also manipulating the location of grown islands. By taking advantage of the iodide-assisted oxidative ripening process and the surface strain profile on Au nanostructures, we further demonstrate the precise control of the islands’ number, coverage, and wetting degree, allowing fine-tuning of nanoparticles’ optical properties.  more » « less
Award ID(s):
1808788
NSF-PAR ID:
10382348
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Nano Research
ISSN:
1998-0124
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Engineering the nucleation and growth of plasmonic metals (Ag and Au) on their pre‐existing seeds is expected to produce nanostructures with unconventional morphologies and plasmonic properties that may find unique applications in sensing, catalysis, and broadband energy harvesting. Typical seed‐mediated growth processes take advantage of the perfect lattice match between the deposited metal and seeds to induce conformal coating, leading to either simple size increases (e.g., Au on Au) or the formation of core–shell structures (e.g., Ag on Au) with limited morphology change. In this work, we show that the introduction of a thin layer of metal with considerable lattice mismatch can effectively induce the nucleation of well‐defined Au islands on Au nanocrystal seeds. By controlling the interfacial energy between the seed and the deposited material, the oxidative ripening, and the surface diffusion of metal precursors, we can regulate the number of islands on the seeds and produce complex Au nanostructures with morphologies tunable from core‐satellites to tetramers, trimers, and dimers.

     
    more » « less
  2. Abstract

    Engineering the nucleation and growth of plasmonic metals (Ag and Au) on their pre‐existing seeds is expected to produce nanostructures with unconventional morphologies and plasmonic properties that may find unique applications in sensing, catalysis, and broadband energy harvesting. Typical seed‐mediated growth processes take advantage of the perfect lattice match between the deposited metal and seeds to induce conformal coating, leading to either simple size increases (e.g., Au on Au) or the formation of core–shell structures (e.g., Ag on Au) with limited morphology change. In this work, we show that the introduction of a thin layer of metal with considerable lattice mismatch can effectively induce the nucleation of well‐defined Au islands on Au nanocrystal seeds. By controlling the interfacial energy between the seed and the deposited material, the oxidative ripening, and the surface diffusion of metal precursors, we can regulate the number of islands on the seeds and produce complex Au nanostructures with morphologies tunable from core‐satellites to tetramers, trimers, and dimers.

     
    more » « less
  3. Abstract

    Facet‐selective etching and deposition, as determined by the landscape of surface energy, represent two powerful methods for the transformation of noble‐metal nanocrystals into nanostructures with complex shapes or morphologies. This review highlights the use of these two methods, including integration of them, for the fabrication of novel monometallic and bimetallic nanostructures with enhanced properties. We start with an introduction to the role of surface capping in controlling the facet‐selective etching or deposition on the surface of Ag nanocrystals, followed by a case study of how to maneuver etching and deposition at different facets of Pd nanocrystals for the fabrication of nanoframes. We then introduce the use of galvanic replacement to accomplish selective etching and deposition on two different facets in an orthogonal manner, transforming Pd nanocubes into Pd−Pt octapods. By complementing galvanic replacement with a chemical reduction reaction, it is also feasible to control the rates of these two reactions for the conversion of Ag nanocubes into Ag@Ag−Au concave nanocubes and Ag@Au core‐shell nanocubes. These transformation methods not only greatly increase the shape diversity of metal nanocrystals but also offer nanocrystals with enhanced plasmonic and/or catalytic properties.

     
    more » « less
  4. Abstract

    As an advanced level of control in colloidal synthesis, it is highly desirable to create secondary structures of nanocrystals in a controllable manner for collective properties. Of particular interest is the generation of nanoislands of plasmonic metals (Ag and Au) at a high density around their pre‐existing primary nanocrystals, which may produce abundant hotspots for surface‐enhanced Raman scattering (SERS). Often such secondary structures are difficult to be achieved by direct crystal growth because a conformal growth is favorable due to the lattice match of these metals. Here, this challenge is overcome by developing a partial surface passivation strategy which can effectively shift the crystal growth mode from the “Frank–van der Merwe” mode to the “Volmer–Weber” mode, giving rise to nanoislands as a secondary structure on Au nanocrystals. The key to this strategy is the modification of the Au surface with Ag and subsequent adsorption of iodide at the Ag sites. Further deposition of Au on the modified surface leads to the formation of well‐defined Au–Ag alloy islands of a high density on Au nanocrystals, which exhibit excellent SERS activity. This partial surface passivation strategy is fundamentally important and may inspire further endeavors in pursuit of novel secondary nanostructures and intriguing properties.

     
    more » « less
  5. Abstract

    Reliability, shelf time, and uniformity are major challenges for most metallic nanostructures for surface‐enhanced Raman spectroscopy (SERS). Due to the randomness of the localized field supported by silver and gold nanopatterns in conventional structures, the quantitative analysis of the target in the practical application of SERS sensing is a challenge. Here, a superabsorbing metasurface with hybrid Ag–Au nanostructures is proposed. A two‐step process of deposition plus subsequent thermal annealing is developed to shrink the gap among the metallic nanoparticles with no top‐down lithography technology involved. Because of the light trapping strategy enabled by the hybrid Ag–Au metasurface structure, the excitation laser energy can be localized at the edges of the nanoparticles more efficiently, resulting in enhanced sensing resolution. Intriguingly, because more hot spots are excited over a given area with higher density of small nanoparticles, the spatial distribution of the localized field is more uniform, resulting in superior performance for potential quantitative sensing of drugs (i.e., cocaine) and chemicals (i.e., molecules with thiol groups in this report). Furthermore, the final coating of the second Au nanoparticle layer improves the reliability of the chip, which is demonstrated effective after 12 month shelf time in an ambient storage environment.

     
    more » « less