skip to main content


Title: Scaling of Electron Heating by Magnetization During Reconnection and Applications to Dipolarization Fronts and Super‐Hot Solar Flares
Abstract

Electron ring velocity space distributions have previously been seen in numerical simulations of magnetic reconnection exhausts and have been suggested to be caused by the magnetization of the electron outflow jet by the compressed reconnected magnetic fields (Shuster et al., 2014,https://doi.org/10.1002/2014GL060608). We present a theory of the dependence of the major and minor radii of the ring distributions solely in terms of upstream (lobe) plasma conditions, thereby allowing a prediction of the associated temperature and temperature anisotropy of the rings in terms of upstream parameters. We test the validity of the prediction using 2.5‐dimensional particle‐in‐cell (PIC) simulations with varying upstream plasma density and temperature, finding excellent agreement between the predicted and simulated values. We confirm the Shuster et al. suggestion for the cause of the ring distributions, and also find that the ring distributions are located in a region marked by a plateau, or shoulder, in the reconnected magnetic field profile. The predictions of the temperature are consistent with observed electron temperatures in dipolarization fronts, and may provide an explanation for the generation of plasma with temperatures in the 10s of MK in super‐hot solar flares. A possible extension of the model to dayside reconnection is discussed. Since ring distributions are known to excite whistler waves, the present results should be useful for quantifying the generation of whistler waves in reconnection exhausts.

 
more » « less
Award ID(s):
1804428 2024198
NSF-PAR ID:
10444578
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
127
Issue:
8
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Using Magnetospheric Multiscale (MMS) observations and combined MHD/test particle simulations, we further explore characteristic ion velocity distributions in the plasma sheet boundary layer. The observations are characterized by earthward beams, which at a slightly later time are accompanied by weaker but faster tailward beams. Two events are presented showing different histories. The first event happens at entry from the lobe into the plasma sheet. Energy‐time dispersion indicates a source region about 25 tailward of the satellite. The second event follows the passage of a dipolarization front closer to Earth. In contrast to earlier MHD simulations, but in better qualitative agreement with the first observation, reconnection in the present simulation was initiated near. Simulated distributions right at the boundary are characterized by a single crescent‐shaped earthward beam, as discussed earlier (Birn, Hesse, et al., 2015,https://doi.org/10.1002/2015JA021573). Farther inside, or at a later time, the distributions now also show a simple reflected beam, evolving toward a more ring‐like distribution. The simulations provide insight into the acceleration sites: The innermost edges of the direct and reflected beams consist of ions accelerated in the vicinity of the reconnection site. This supports the validity of estimating the acceleration location based on a time‐of‐flight analysis (after Onsager et al., 1990,https://doi.org/10.1029/GL017i011p01837). However, this assumption becomes invalid at later times when the acceleration becomes dominated by the earthward propagating dipolarization electric field, such that earthward and tailward reflected beams are no longer accelerated at the same location and the same time.

     
    more » « less
  2. Abstract

    MMS3 spacecraft passed the vicinity of the electron diffusion region of magnetotail reconnection on 3 July 2017, observing discrepancies between perpendicular electron bulk velocities anddrift, and agyrotropic electron crescent distributions. Analyzing linear wave dispersions, Burch et al. (2019,https://doi.org/10.1029/2019GL082471) showed the electron crescent generates high‐frequency waves. We investigate harmonics of upper‐hybrid (UH) waves using both observation and particle‐in‐cell (PIC) simulation, and the generation of electromagnetic radiation from PIC simulation. Harmonics of UH are linearly polarized and propagate along the perpendicular direction to the ambient magnetic field. Compared with two‐dimensional PIC simulation and nonlinear kinetic theory, we show that the nonlinear beam‐plasma interaction between the agyrotropic electrons and the core electrons generates harmonics of UH. Moreover, PIC simulation shows that agyrotropic electron beam can lead to electromagnetic (EM) radiation at the plasma frequency and harmonics.

     
    more » « less
  3. Abstract

    We present results and analysis of finite‐difference time‐domain (FDTD) simulations of electromagnetic waves scattering off meteor head plasma using an analytical model and a simulation‐derived model of the head plasma distribution. The analytical model was developed by (Dimant & Oppenheim, 2017b,https://doi.org/10.1002/2017JA023963) and the simulation‐derived model is based on particle‐in‐cell (PIC) simulations presented in (Sugar et al., 2019,https://doi.org/10.1029/2018JA026434). Both of these head plasma distribution models show the meteor head plasma is significantly different than the spherically symmetric distributions used in previous studies of meteor head plasma. We use the FDTD simulation results to fit a power law model that relates the meteoroid ablation rate to the head echo radar cross section (RCS), and show that the RCS of plasma distributions derived from the Dimant‐Oppenheim analytical model and the PIC simulations agree to within 4 dBsm. The power law model yields more accurate meteoroid mass estimates than previous methods based on spherically symmetric plasma distributions.

     
    more » « less
  4. Abstract

    Obtaining meteoroid mass from head echo radar cross section depends on the assumed plasma density distribution around the meteoroid. An analytical model presented in Dimant and Oppenheim (2017a,https://doi.org/10.1002/2017JA023960; 2017b,https://doi.org/10.1002/2017JA023963) and simulation results presented in Sugar et al. (2018,https://doi.org/10.1002/2018JA025265) suggest the plasma density distribution is significantly different than the spherically symmetric Gaussian distribution used to calculate meteoroid masses in many previous studies. However, these analytical and simulation results ignored the effects of electric and magnetic fields and assumed quasi‐neutrality. This paper presents results from the first particle‐in‐cell simulations of head echo plasma that include electric and magnetic fields. The simulations show that the fields change the ion density distribution by less than ∼2% in the meteor head echo region, but the electron density distribution changes by up to tens of percent depending on the location, electron energies, and magnetic field orientation with respect to the meteoroid path.

     
    more » « less
  5. Abstract

    We present modeling results of tube and knot (T&K) dynamics accompanying thermospheric Kelvin Helmholtz Instabilities (KHI) in an event captured by the 2018 Super Soaker campaign (R. L. Mesquita et al., 2020,https://doi.org/10.1029/2020JA027972). Chemical tracers released by a rocketsonde on 26 January 2018 showed coherent KHI in the lower thermosphere that rapidly deteriorated within 45–90 s. Using wind and temperature data from the event, we conducted high resolution direct numerical simulations (DNS) employing both wide and narrow spanwise domains to facilitate (wide domain case) and prohibit (narrow domain case) the axial deformation of KH billows that allows tubes and knots to form. KHI T&K dynamics are shown to produce accelerated instability evolution consistent with the observations, achieving peak dissipation rates nearly two times larger and 1.8 buoyancy periods faster than axially uniform KHI generated by the same initial conditions. Rapidly evolving twist waves are revealed to drive the transition to turbulence; their evolution precludes the formation of secondary convective instabilities and secondary KHI seen to dominate the turbulence evolution in artificially constrained laboratory and simulation environments. T&K dynamics extract more kinetic energy from the background environment and yield greater irreversible energy exchange and entropy production, yet they do so with weaker mixing efficiency due to greater energy dissipation. The results suggest that enhanced mixing from thermospheric KHI T&K events could account for the discrepancy between modeled and observed mixing in the lower thermosphere (Garcia et al., 2014,https://doi.org/10.1002/2013JD021208; Liu, 2021,https://doi.org/10.1029/2020GL091474) and merits further study.

     
    more » « less