Plate tectonic reconstructions of three of the best-defined Cenozoic subduction initiation (SI) events in the western Pacific, Izu-Bonin-Mariana, Vanuatu, and Puysegur subduction zones, show substantial components of strike-slip motion before and during the subduction initiation. Using computational models, we show that strike-slip motion has a large influence on the effective strength of incipient margins and the ease of subduction initiation. The parameter space associated with visco-elasto-plastic rheologies, plate weakening, and plate forces and kinematics is explored and we show that subduction initiates more easily with a higher force, a faster weakening, or greater strike-slip motion. With the analytical solution, we demonstrate that the effect of strike-slip motion can be equivalently represented by a modified weakening rate. Along transpressive margins, we show that a block of oceanic crust can become trapped between a new thrust fault and the antecedent strike-slip fault and is consistent with structural reconstructions and gravity models of the Puysegur margin. Together, models and observations suggest that subduction initiation can be triggered when margins become progressively weakened to the point that the resisting forces become smaller than the driving forces, and as the negative buoyancy builds up, the intraplate stress eventually turns from compressional into extensional. The analytical formulation of the initiation time,tSI, marking the moment when intraplate stress flips sign, is validated with a computational models. The analytical solution shows thattSIis dominated by convergence velocity, while the plate age, strike-slip velocity, and weakening rate all have a smaller but still important effect on the time scale of subduction initiation.
more »
« less
Effects of Elasticity on Subduction Initiation: Insight From 2‐D Thermomechanical Models
Abstract Despite extensive modeling efforts, the dynamics of subduction initiation (SI), including the role of elasticity, are not fully understood. Using two‐dimensional thermomechanical models with visco‐plastic (VP) and visco‐elasto‐plastic (VEP) rheologies, we systematically investigate the role of elasticity in intraoceanic SI using two model setups: spontaneous initiation without imposed convergence and induced initiation with imposed convergence. In spontaneous models, the overriding plate age of <20 Ma and the subducting plate age of >50 Ma generally lead to vertically driven SI with either rheology, but for a given age contrast, SI is easier to occur with the VEP rheology. In induced model with either rheology, when the two plates are young and have a small age contrast, the resulting SI is horizontally driven, and elasticity does not affect SI significantly, regardless of the convergence rate. However, when the thermal age contrast is large and a convergence rate is relatively low, the SI in induced models is vertically driven and similar to that in the spontaneous models, and the VEP rheology leads to faster SI than the VP rheology. This effect of elasticity becomes smaller with increasing initial horizontal compressional stress but does not become fully negated by the initial stress of <∼50 MPa. Therefore, inclusion of elasticity with reasonable shear modulus and initial stress values results in a weaker slab, making it easier for vertically driven SI to occur when the age contrast is relatively large.
more »
« less
- Award ID(s):
- 2054597
- PAR ID:
- 10382497
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 127
- Issue:
- 11
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Despite the critical role of subduction in plate tectonics, the dynamics of its initiation remains unclear. High-temperature low-pressure metamorphic soles are vestiges of subduction initiation, providing records of the pressure and temperature conditions along the subducting slab surface during subduction initiation that can possibly differentiate the two end-member subduction initiation modes: spontaneous and induced. Here, using numerical models, we show that the slab surface temperature reaches 800–900 °C at ~1 GPa over a wide range of parameter values for spontaneous subduction initiation whereas for induced subduction initiation, such conditions can be reached only if the age of the overriding plate is <5 Ma. These modeling results indicate that spontaneous subduction initiation would be more favorable for creating high-temperature conditions. However, the synthesis of our modeling results and geological observations indicate that the majority of the metamorphic soles likely formed during induced subduction initiation that involved a young overriding plate.more » « less
-
Abstract Despite significant study, when and how plate tectonics initiated on Earth remains contentious. Geologic evidence from some of Earth's earliest cratons has been interpreted as reflecting the formation of initial continental blocks by non‐subduction processes, which then trigger subduction initiation at their margins. Numerical models of mantle convection with a plastic yield stress rheology have shown this scenario is plausible. However, whether continents can trigger subduction initiation has not been tested with other rheologies. We, therefore, use numerical models of mantle convection with an imposed continental block to test whether continents facilitate subduction initiation with a grain‐damage mechanism, where weak shear zones form by grain size reduction. Our results show that continents modestly enhance stresses in the lithosphere, but not enough to significantly impact lithospheric damage or subduction initiation: continents have minimal influence on lithospheric damage or plate speed, nor does subduction preferentially initiate at the continental margin. A new regime diagram that includes continental blocks shows only a small shift in the boundary between the mobile‐lid and stagnant‐lid regimes when continents are added. However, as we do find that stresses are modestly enhanced at the continental margin in our models, we develop a scaling law for this stress enhancement to more fully test whether continents could trigger subduction initiation on early Earth. We find that lithospheric stresses supplied by continents are not sufficient to initiate subduction on the early Earth on their own with grain‐damage rheology; instead, additional factors would be required.more » « less
-
SUMMARY The initiation and development of subduction zones are associated with substantial stress changes both within plates and at plate boundaries. We formulate a simple analytical model based on the force balance equation of a subduction zone, and validate it with numerical calculations of highly non-linear, coupled thermomechanical system. With two kinds of boundary conditions with either fixed velocity or fixed force in the far-field, we quantitatively analyse the role of each component in the force balance equation, including slab pull, interplate friction, plate bending and basal traction, on the kinematics and stress state of a subducting plate. Based on the numerical and analytical models, we discuss the evolution of plate curvature, the role of plastic yielding and elasticity, and how different factors affect the timing of subduction initiation. We demonstrate with the presence of plastic yielding for a plate of thickness, H, that the bending force is proportional to H2, instead of H3 as previously thought. Although elasticity increases the force required to start nucleating subduction it does not substantially change the total work required to initiate a subduction zone when the yielding stress is small. The analytical model provides an excellent fit to the total work and time to initiate subduction and the force and velocity as a function of convergence and time. Plate convergence and weakening rate during nucleation are the dominant factors influencing the force balance of the plate, and 200 km of plate convergence is typically required to bring a nascent subduction zone into a self-sustaining state. The closed-form solution now provides a framework to better interpret even more complex, time-dependent systems in three dimensions.more » « less
-
Rheology-informed neural networks (RhINNs) have recently been popularized as data-driven platforms for solving rheologically relevant differential equations. While RhINNs can be employed to solve different constitutive equations of interest in a forward or inverse manner, their ability to do so strictly depends on the type of data and the choice of models embedded within their structure. Here, the applicability of RhINNs in general, and the interplay between the choice of models, parameters of the neural network itself, and the type of data at hand are studied. To do so, a RhINN is informed by a series of thixotropic elasto-visco-plastic (TEVP) constitutive models, and its ability to accurately recover model parameters from stress growth and oscillatory shear flow protocols is investigated. We observed that by simplifying the constitutive model, RhINN convergence is improved in terms of parameter recovery accuracy and computation speed while over-simplifying the model is detrimental to accuracy. Moreover, several hyperparameters, e.g., the learning rate, activation function, initial conditions for the fitting parameters, and error heuristics, should be at the top of the checklist when aiming to improve parameter recovery using RhINNs. Finally, the given data form plays a pivotal role, and no convergence is observed when one set of experiments is used as the given data for either of the flow protocols. The range of parameters is also a limiting factor when employing RhINNs for parameter recovery, and ad hoc modifications to the constitutive model can be trivial remedies to guarantee convergence when recovering fitting parameters with large values.more » « less
An official website of the United States government
