skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Title: Side‐Chain Control of Topochemical Polymer Single Crystals with Tunable Elastic Modulus
Abstract Topochemical polymerizations hold the promise of producing high molecular weight and stereoregular single crystalline polymers by first aligning monomers before polymerization. However, monomer modifications often alter the crystal packing and result in non‐reactive polymorphs. Here, we report a systematic study on the side chain functionalization of the bis(indandione) derivative system that can be polymerized under visible light. Precisely engineered side chains help organize the monomer crystals in a one‐dimensional fashion to maintain the topochemical reactivity. By optimizing the side chain length and end group of monomers, the elastic modulus of the resulting polymer single crystals can also be greatly enhanced. Lastly, using ultrasonication, insoluble polymer single crystals can be processed into free‐standing and robust polymer thin films. This work provides new insights on the molecular design of topochemical reactions and paves the way for future applications of this fascinating family of materials.  more » « less
Award ID(s):
2143568 2045887
PAR ID:
10382538
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
61
Issue:
49
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Monte Carlo simulation is employed using the bond‐fluctuation model (BFM) to explore the role of free‐monomer model on surface‐initiated controlled polymerization from flat substrates. Three free‐monomer models differ in two aspects: 1) their extent of excluded volume interactions between free‐monomer/polymer segments and 2) monomer availability (finite or infinite) during the simulation. In the explicit monomer (EM) model, free‐monomers behave as a single BFM‑type units. In the phantom monomer (PM) model, free‐monomers act analogously to those in the EM model but lack excluded volume interactions with the growing polymers. In the implicit monomer (IM) model, no explicit monomers are included in the simulation box; the polymers can grow as long as space is available near active chain‐ends. It is found that the breadth of the molecular weight distribution of the grown polymers decreases from EM, to PM, to IM models. With the EM model, free‐monomers are excluded from the near‐surface region, while with the PM model they are not. Due to its excluded volume interactions, the EM model tends to compress the brush against the substrate. Finally, the relaxation of the shape of a polydisperse brush after the polymerization reaction ends has been reported. 
    more » « less
  2. This account describes our recent efforts in the design and synthesis of several series of unconventional conjugated polymers derived from a common set of trans-enediyne (tEDY) monomers. The journey started with a failed attempt, through acyclic diene metathesis of triene monomers, to prepare soluble polyacetylenes (PAs) having cross-conjugated side-groups on alternate double bonds along the main chain. At this seemingly dead end of the project, we found that the tEDY intermediates leading to triene monomers could undergo alkyne metathesis to generate soluble polydiacetylenes (PDAs). Such acyclic enediyne metathesis represents the first example of a solution synthesis of PDAs, in contrast to the conventional topochemical methods. By applying Glaser–Hay-type reaction conditions with selected tEDY monomers, polytriacetylenes were smoothly obtained; these possessed aromatic units directly attached to the polymer main chains, which significantly affected the electronic properties of the polymers. Furthermore, through hydroboration of the tEDY monomers, ‘boron-doped’ polyacetylenes (BDPAs) were prepared that can be considered as PAs with every fourth double bond replaced with a boron atom. These BDPAs represent the first boron main-chain conjugated polymers lacking aromatic units along the backbone, potentially enhancing electronic delocalization along the main chain. 
    more » « less
  3. Molecular search is important in chemistry, biology, and informatics for identifying molecular structures within large data sets, improving knowledge discovery and innovation, and making chemical data FAIR (findable, accessible, interoperable, reusable). Search algorithms for polymers are significantly less developed than those for small molecules because polymer search relies on searching by polymer name, which can be challenging because polymer naming is overly broad (i.e., polyethylene), complicated for complex chemical structures, and often does not correspond to official IUPAC conventions. Chemical structure search in polymers is limited to substructures, such as monomers, without awareness of connectivity or topology. This work introduces a novel query language and graph traversal search algorithm for polymers that provides the first search method able to fully capture all of the chemical structures present in polymers. The BigSMARTS query language, an extension of the small-molecule SMARTS language, allows users to write queries that localize monomer and functional group searches to different parts of the polymer, like the middle block of a triblock, the side chain of a graft, and the backbone of a repeat unit. The substructure search algorithm is based on the traversal of graph representations of the generating functions for the stochastic graphs of polymers. Operationally, the algorithm first identifies cycles representing the monomers and then the end groups and finally performs a depth-first search to match entire subgraphs. To validate the algorithm, hundreds of queries were searched against hundreds of target chemistries and topologies from the literature, with approximately 440,000 query–target pairs. This tool provides a detailed algorithm that can be implemented in search engines to provide search results with full matching of the monomer connectivity and polymer topology. 
    more » « less
  4. Abstract A versatile synthetic platform is reported that affords high molecular weight graft copolymers containing polydimethylsiloxane (PDMS) backbones and vinyl‐based polymer side chains with excellent control over molecular weight and grafting density. The synthetic approach leverages thiol‐ene click chemistry to attach an atom‐transfer radical polymerization (ATRP) initiator to a variety of commercially available poly(dimethylsiloxane‐co‐methylvinylsiloxane) backbones (PDMS‐co‐PVMS), followed by controlled radical polymerization with a wide scope of vinyl monomers. Selective degradation of the siloxane backbone with tetrabutylammonium fluoride confirmed the controlled nature of side‐chain growth via ATRP, yielding targeted side‐chain lengths for copolymers containing up to 50% grafting density and overall molecular weights in excess of 1 MDa. In addition, by using a mixture of thiols, grafting density and functionality can be further controlled by tuning initiator loading along the backbone. For example, solid‐state fluorescence of the graft copolymers was achieved by incorporating a thiol‐containing fluorophore along the siloxane backbone during the thiol‐ene click reaction. This simple synthetic platform provides facile control over the properties of a wide variety of grafted copolymers containing flexible PDMS backbones and vinyl polymer side chains. 
    more » « less
  5. Abstract Conventional topochemical photopolymerization reactions occur exclusively in precisely-engineered photoactive crystalline states, which often produces high-insoluble polymers. To mitigate this, here, we report the mechanoactivation of photostable styryldipyrylium-based monomers, which results in their amorphization-enabled solid-state photopolymerization and produces soluble and processable amorphous polymers. A combination of solid-state nuclear magnetic resonance, X-ray diffraction, and absorption/fluorescence spectroscopy reveals the crucial role of a mechanically-disordered monomer phase in yielding polymers via photo-induced [2 + 2] cycloaddition reaction. Hence, mechanoactivation and amorphization can expand the scope of topochemical polymerization conditions to open up opportunities for generating polymers that are otherwise difficult to synthesize and analyze. 
    more » « less