skip to main content


Title: Laboratory and Astronomical Discovery of Magnesium Dicarbide, MgC 2
Abstract

We report the detection of magnesium dicarbide, MgC2, in the laboratory at centimeter wavelengths and assign24MgC2,25MgC2, and26MgC2to 14 unidentified lines in the radio spectrum of the circumstellar envelope of the evolved carbon star IRC+10216. The structure of MgC2is found to be T-shaped with a highly ionic bond between the metal atom and the C2unit, analogous to other dicarbides containing electropositive elements. A two-temperature excitation model of the MgC2emission lines observed in IRC+10216 yields a very low rotational temperature of 6 ± 1 K, a kinetic temperature of 22 ± 13 K, and a column density of (1.0 ± 0.3) × 1012cm−2. The abundance of MgC2relative to the magnesium–carbon chains MgCCH, MgC4H, and MgC6H is 1:2:22:20 and provides a new constraint on the sequential radiative association–dissociative recombination mechanisms implicated in the production of metal-bearing molecules in circumstellar environments.

 
more » « less
Award ID(s):
2110489
NSF-PAR ID:
10382610
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
940
Issue:
2
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L42
Size(s):
Article No. L42
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Calcium dicarbide, CaC2, has been characterized at high resolution in the laboratory, and its main isotopologue,40CaC2, has been assigned to 14 rotational emission lines between 14 and 115 GHz, including 12 previously unassigned lines, in the expanding molecular envelope of the evolved carbon star IRC+10216. Aided by high-level quantum calculations and measurements of multiple isotopologues, CaC2is determined to be a T-shaped molecule with a highly ionic bond linking the metal atom to the C2unit, very similar in structure to isovalent magnesium dicarbide (MgC2). The excitation of CaC2is characterized by a very low rotational temperature of 5.8 ± 0.6 K and a kinetic temperature of 36 ± 16 K, similar to values derived for MgC2. On the assumption that the emission originates from a 30″ shell in IRC+10216, the column density of CaC2is (5.6 ± 1.7) × 1011cm−2. CaC2is only the second Ca-bearing molecule besides CaNC and only the second metal dicarbide besides MgC2identified in space. Owing to the similarity between the predicted ion–molecule chemistry of Ca and Mg, a comparison of the CaC2abundance with that of MgC2and related species permits empirical inferences about the radiative association–dissociative recombination processes postulated to yield metal-bearing molecules in IRC+10216 and similar objects.

     
    more » « less
  2. Abstract

    A new interstellar molecule, FeC (X3Δi), has been identified in the circumstellar envelope of the carbon-rich asymptotic giant branch star IRC+10216. FeC is the second iron-bearing species conclusively observed in the interstellar medium, in addition to FeCN, also found in IRC+10216. TheJ= 4 → 3, 5 → 4, and 6 → 5 rotational transitions of this free radical near 160, 201, and 241 GHz, respectively, were detected in the lowest spin–orbit ladder, Ω = 3, using the Submillimeter Telescope of the Arizona Radio Observatory (ARO) for the 1 mm lines and the ARO 12 m at 2 mm. Because the ground state of FeC is inverted, these transitions are the lowest energy lines. The detected features exhibit slight U shapes with LSR velocities nearVLSR≈ −26 km s−1and linewidths of ΔV1/2≈ 30 km s−1, line parameters characteristic of IRC+10216. Radiative transfer modeling of FeC suggests that the molecule has a shell distribution with peak radius near 300R*(∼6″) extending out to ∼500R*(∼10″) and a fractional abundance, relative to H2, off∼ 6 × 10−11. The previous FeCN spectra were also modeled, yielding an abundance off∼ 8 × 10−11in a larger shell situated near 800R*. These distributions suggest that FeC may be the precursor species for FeCN. Unlike cyanides and carbon-chain molecules, diatomic carbides with a metallic element are rare in IRC+10216, with FeC being the first such detection.

     
    more » « less
  3. Abstract

    The millimeter-wave spectrum of the SiP radical (X2Πi) has been measured in the laboratory for the first time using direct-absorption methods. SiP was created by the reaction of phosphorus vapor and SiH4in argon in an AC discharge. Fifteen rotational transitions (J+ 1 ←J) were measured for SiP in the Ω = 3/2 ladder in the frequency range 151–533 GHz, and rotational, lambda doubling, and phosphorus hyperfine constants determined. Based on the laboratory measurements, SiP was detected in the circumstellar shell of IRC+10216, using the Submillimeter Telescope and the 12 m antenna of the Arizona Radio Observatory at 1 mm and 2 mm, respectively. Eight transitions of SiP were searched: four were completely obscured by stronger features, two were uncontaminated (J= 13.5 → 12.5 and 16.5 → 15.5), and two were partially blended with other lines (J= 8.5 → 7.5 and 17.5 → 16.5). The SiP line profiles were broader than expected for IRC+10216, consistent with the hyperfine splitting. From non-LTE radiative transfer modeling, SiP was found to have a shell distribution with a radius ∼300R*, and an abundance, relative to H2, off∼ 2 × 10−9. From additional modeling, abundances of 7 × 10−9and 9 × 10−10were determined for CP and PN, respectively, both located in shells at 550–650R*. SiP may be formed from grain destruction, which liberates both phosphorus and silicon into the gas phase, and then is channeled into other P-bearing molecules such as PN and CP.

     
    more » « less
  4. Recent advances in circumstellar metal chemistry and laser-coolable molecules have spurred interest in the spectroscopy and electronic properties of alkaline earth metal-bearing polyatomic molecules. We report the microwave rotational spectra of two members of this important chemical family, the linear magnesium- carbon chains MgC4H and MgC3N, detected with cavity Fourier transform microwave spectroscopy of a laser ablation-electric discharge expansion. The rotation, fine, and hyperfine parameters have been derived from the precise laboratory rest frequencies. These experimental results, combined with a theoretical quantum chemical analysis, confirm the recent identification of MgC4H and MgC3N in the circumstellar envelope of the evolved carbon-rich star IRC+10216. The spectroscopic data also provide insight into the structural and electronic properties that influence the metal-based optical cycling center in this unique class of laser-coolable polyatomics. 
    more » « less
  5. Abstract

    The chemical reduction of π‐conjugated bilayer nanographene1(C138H120) with K and Rb in the presence of 18‐crown‐6 affords [K+(18‐crown‐6)(THF)2][{K+(18‐crown‐6)}2(THF)0.5][C138H1223−] (2) and [Rb+(18‐crown‐6)2][{Rb+(18‐crown‐6)}2(C138H1223−)] (3). Whereas K+cations are fully solvent‐separated from the trianionic core thus affording a “naked”1.3anion, Rb+cations are coordinated to the negatively charged layers of1.3. According to DFT calculations, the localization of the first two electrons in the helicene moiety leads to an unprecedented site‐specific hydrogenation process at the carbon atoms located on the edge of the helicene backbone. This uncommon reduction‐induced site‐specific hydrogenation provokes dramatic changes in the (electronic) structure of1as the helicene backbone becomes more compressed and twisted upon chemical reduction, which results in a clear slippage of the bilayers.

     
    more » « less