Abstract Even small solar flares can display a surprising level of complexity regarding their morphology and temporal evolution. Many of their properties, such as energy release and electron acceleration can be studied using highly complementary observations at X-ray and radio wavelengths. We present X-ray observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager and radio observations from the Karl G. Jansky Very Large Array (VLA) of a series of GOES A3.4–B1.6 class flares observed on 2013 April 23. The flares, as seen in X-ray and extreme ultraviolet, originated from multiple locations within active region NOAA 11726. A veritable zoo of different radio emissions between 1 GHz and 2 GHz was observed cotemporally with the X-ray flares. In addition to broadband continuum emission, broadband short-lived bursts and narrowband spikes, indicative of accelerated electrons, were observed. However, these sources were located up to 150″ away from the flaring X-ray sources but only some of these emissions could be explained as signatures of electrons that were accelerated near the main flare site. For other sources, no obvious magnetic connection to the main flare site could be found. These emissions likely originate from secondary acceleration sites triggered by the flare, but may be due to reconnection and acceleration completely unrelated to the cotemporally observed flare. Thanks to the extremely high sensitivity of the VLA, not achieved with current X-ray instrumentation, it is shown that particle acceleration happens frequently and at multiple locations within a flaring active region.
more »
« less
Multiple Regions of Nonthermal Quasiperiodic Pulsations during the Impulsive Phase of a Solar Flare
Abstract Flare-associated quasiperiodic pulsations (QPPs) in radio and X-ray wavelengths, particularly those related to nonthermal electrons, contain important information about the energy release and transport processes during flares. However, the paucity of spatially resolved observations of such QPPs with a fast time cadence has been an obstacle for us to further understand their physical nature. Here, we report observations of such a QPP event that occurred during the impulsive phase of a C1.8-class eruptive solar flare using radio imaging spectroscopy data from the Karl G. Jansky Very Large Array (VLA) and complementary X-ray imaging and spectroscopy data. The radio QPPs, observed by the VLA in the 1–2 GHz with a subsecond cadence, are shown as three spatially distinct sources with different physical characteristics. Two radio sources are located near the conjugate footpoints of the erupting magnetic flux rope with opposite senses of polarization. One of the sources displays a QPP behavior with a ∼5 s period. The third radio source, located at the top of the postflare arcade, coincides with the location of an X-ray source and shares a similar period of ∼25–45 s. We show that the two oppositely polarized radio sources are likely due to coherent electron cyclotron maser emission. On the other hand, the looptop QPP source, observed in both radio and X-rays, is consistent with incoherent gyrosynchrotron and bremsstrahlung emission, respectively. We conclude that the concurrent, but spatially distinct QPP sources must involve multiple mechanisms which operate in different magnetic loop systems and at different periods.
more »
« less
- Award ID(s):
- 1654382
- PAR ID:
- 10382670
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 940
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 137
- Size(s):
- Article No. 137
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Plasmoids (or magnetic islands) are believed to play an important role in the onset of fast magnetic reconnection and particle acceleration during solar flares and eruptions. Direct imaging of flare current sheets and the formation/ejection of multiple plasmoids in extreme-ultraviolet images, along with simultaneous X-ray and radio observations, offers significant insights into the mechanisms driving particle acceleration in solar flares. Here, we present direct imaging of the formation and ejection of multiple plasmoids in flare plasma/current sheets and the associated quasiperiodic pulsations (QPPs) observed at X-ray and radio wavelengths, using observations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly, RHESSI, and the Fermi Gamma-ray Burst Monitor. These plasmoids propagate bidirectionally upward and downward along the flare current sheet beneath the erupting flux rope during two successive flares associated with confined/failed eruptions. The flux rope exhibits evidence of helical kink instability, with the formation and ejection of multiple plasmoids in the flare current sheet, as predicted in an MHD simulation of a kink-unstable flux rope. RHESSI X-ray images show double coronal sources (“looptop” and higher coronal sources) located at both ends of the flare current/plasma sheet. Moreover, we detect an additional transient faint X-ray source (6–12 keV) located between the double coronal sources, which is cospatial with multiple plasmoids in the flare current sheet. X-ray (soft and hard) and radio (decimetric) observations unveil QPPs (periods ≈ 10 s and 100 s) associated with the ejection and coalescence of plasmoids. These observations suggest that energetic electrons are accelerated during the ejection and coalescence of multiple plasmoids in the flare current sheet.more » « less
-
Abstract Magnetic reconnection is understood to be the main physical process that facilitates the transformation of magnetic energy into heat, motion, and particle acceleration during solar eruptions. Yet, observational constraints on reconnection region properties and dynamics are limited due to a lack of high-cadence and high-spatial-resolution observations. By studying the evolution and morphology of postreconnected field-lines footpoints, or flare ribbons and vector photospheric magnetic field, we estimate the magnetic reconnection flux and its rate of change with time to study the flare reconnection process and dynamics of the current sheet above. We compare high-resolution imaging data to study the evolution of the fine structure in flare ribbons as ribbons spread away from the polarity inversion line. Using data from two illustrative events (one M- and X-class flare), we explore the relationship between the ribbon-front fine structure and the temporal development of bursts in the reconnection region. Additionally, we use theRibbonDBdatabase to perform statistical analysis of 73 (C- to X-class) flares and identify quasiperiodic pulsation (QPP) properties using the Wavelet Transform. Our main finding is the discovery of QPP signatures in the derived magnetic reconnection rates in both example events and the large flare sample. We find that the oscillation periods range from 1 to 4 minutes. Furthermore, we find nearly cotemporal bursts in Hard X-ray (HXR) emission profiles. We discuss how dynamical processes in the current sheet involving plasmoids can explain the nearly cotemporal signatures of quasiperiodicity in the reconnection rates and HXR emission.more » « less
-
Abstract The acceleration and transport of energetic electrons during solar flares is one of the outstanding topics in solar physics. Recent X-ray and radio imaging and spectroscopy observations have provided diagnostics of the distribution of nonthermal electrons and suggested that, in certain flare events, electrons are primarily accelerated in the loop top and likely experience trapping and/or scattering effects. By combining the focused particle transport equation with magnetohydrodynamic (MHD) simulations of solar flares, we present a macroscopic particle model that naturally incorporates electron acceleration and transport. Our simulation results indicate that physical processes such as turbulent pitch-angle scattering can have important impacts on both electron acceleration in the loop top and transport in the flare loop, and their influences are highly energy-dependent. A spatial-dependent turbulent scattering with enhancement in the loop top can enable both efficient electron acceleration to high energies and transport of abundant electrons to the footpoints. We further generate spatially resolved synthetic hard X-ray (HXR) emission images and spectra, revealing both the loop-top and footpoint HXR sources. Similar to the observations, we show that the footpoint HXR sources are brighter and harder than the loop-top HXR source. We suggest that the macroscopic particle model provides new insights into understanding the connection between the observed loop-top and footpoint nonthermal emission sources by combining the particle model with dynamically evolving MHD simulations of solar flares.more » « less
-
Abstract The radio galaxy M87 is the central dominant galaxy of the Virgo Cluster. Very high-energy (VHE, ≳0.1 TeV) emission from M87 has been detected by imaging air Cherenkov telescopes. Recently, marginal evidence for VHE long-term emission has also been observed by the High Altitude Water Cherenkov Observatory, a gamma-ray and cosmic-ray detector array located in Puebla, Mexico. The mechanism that produces VHE emission in M87 remains unclear. This emission originates in its prominent jet, which has been spatially resolved from radio to X-rays. In this paper, we construct a spectral energy distribution from radio to gamma rays that is representative of the nonflaring activity of the source, and in order to explain the observed emission, we fit it with a lepto-hadronic emission model. We found that this model is able to explain nonflaring VHE emission of M87 as well as an orphan flare reported in 2005.more » « less