skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: The Disk Population in a Distant Massive Protocluster

The unprecedented angular resolution and sensitivity of the Atacama Large Millimeter/submillimeter Array make it possible to unveil disk populations in distant (>2 kpc), embedded young cluster environments. We have conducted an observation toward the central region of the massive protocluster G286.21+0.16 at 1.3 mm. With a spatial resolution of 23 mas and a sensitivity of 15μJy beam−1, we detect a total of 38 protostellar disks. These disks have dust masses ranging from about 53 to 1825M, assuming a dust temperature of 20 K. This sample is not closely associated with previously identified dense cores, as would be expected for disks around Class 0 protostars. Thus, we expect our sample, being flux-limited, to be mainly composed of Class I/flat-spectrum source disks, since these are typically more massive than Class II disks. Furthermore, we find that the distributions of disk masses and radii are statistically indistinguishable from those of the Class I/flat-spectrum objects in the Orion molecular cloud, indicating that similar processes are operating in G286.21+0.16 to regulate disk formation and evolution. The cluster center appears to host a massive protostellar system composed of three sources within 1200 au, including a potential binary with 600 au projected separation. Relative to this center, there is no evidence for widespread mass segregation in the disk population. We do find a tentative trend of increasing disk radius versus distance from the cluster center, which may point to the influence of dynamical interactions being stronger in the central regions.

more » « less
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Medium: X Size: Article No. 124
["Article No. 124"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present Markov Chain Monte Carlo radiative transfer modeling of a joint ALMA 345 GHz and spectral energy distribution data set for a sample of 97 protostellar disks from the VLA and ALMA Nascent Disk and Multiplicity Survey of Orion Protostars. From this modeling, we derive disk and envelope properties for each protostar, allowing us to examine the bulk properties of a population of young protostars. We find that disks are small, with a median dust radius of 29.4 − 2.7 + 4.1 au and a median dust mass of 5.8 − 2.7 + 4.6 M ⊕ . We find no statistically significant difference between most properties of Class 0, Class I, and flat-spectrum sources with the exception of envelope dust mass and inclination. The distinction between inclination is an indication that the Class 0/I/flat-spectrum system may be difficult to tie uniquely to the evolutionary state of protostars. When comparing with Class II disk dust masses in Taurus from similar radiative transfer modeling, we further find that the trend of disk dust mass decreasing from Class 0 to Class II disks is no longer present, though it remains unclear whether such a comparison is fair owing to differences in star-forming region and modeling techniques. Moreover, the disks we model are broadly gravitationally stable. Finally, we compare disk masses and radii with simulations of disk formation and find that magnetohydrodynamical effects may be important for reproducing the observed properties of disks. 
    more » « less
  2. Abstract

    We present the results from an Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm continuum and12CO (J= 2 − 1) line survey spread over 10 deg2in the Serpens star-forming region of 320 young stellar objects, 302 of which are likely members of Serpens (16 Class I, 35 flat-spectrum, 235 Class II, and 16 Class III). From the continuum data, we derive disk dust masses and show that they systematically decline from Class I to flat-spectrum to Class II sources. Grouped by stellar evolutionary state, the disk mass distributions are similar to other young (<3 Myr) regions, indicating that the large-scale environment of a star-forming region does not strongly affect its overall disk dust mass properties. These comparisons between populations reinforce previous conclusions that disks in the Ophiuchus star-forming region have anomalously low masses at all evolutionary stages. Additionally, we find a single deeply embedded protostar that has not been documented elsewhere in the literature and, from the CO line data, 15 protostellar outflows, which we catalog here.

    more » « less
  3. Abstract The stellar cluster environment is expected to play a central role in the evolution of circumstellar disks. We use thermochemical modeling to constrain the dust and gas masses, disk sizes, UV and X-ray radiation fields, viewing geometries, and central stellar masses of 20 class II disks in the Orion Nebula Cluster (ONC). We fit a large grid of disk models to 350 GHz continuum, CO J = 3 − 2, and HCO + J = 4 − 3 Atacama Large Millimeter/submillimeter Array observations of each target, and we introduce a procedure for modeling interferometric observations of gas disks detected in absorption against a bright molecular cloud background. We find that the ONC disks are massive and compact, with typical radii <100 au, gas masses ≥10 −3 M ⊙ , and gas-to-dust ratios ≥100. The interstellar‐medium‐like gas-to-dust ratios derived from our modeling suggest that compact, externally irradiated disks in the ONC are less prone to gas-phase CO depletion than the massive and extended gas disks that are commonly found in nearby low-mass star-forming regions. The presence of massive gas disks indicates that external photoevaporation may have only recently begun operating in the ONC; though it remains unclear whether other cluster members are older and more evaporated than the ones in our sample. Finally, we compare our dynamically derived stellar masses with the stellar masses predicted from evolutionary models and find excellent agreement. Our study has significantly increased the number of dynamical mass measurements in the mass range ≤0.5 M ⊙ , demonstrating that the ONC is an ideal region for obtaining large samples of dynamical mass measurements toward low-mass M-dwarfs. 
    more » « less
  4. Abstract

    The Orion Nebula Cluster (ONC) hosts protoplanetary disks experiencing external photoevaporation by the cluster’s intense UV field. These “proplyds” are comprised of a disk surrounded by an ionization front. We present ALMA Band 3 (3.1 mm) continuum observations of 12 proplyds. Thermal emission from the dust disks and free–free emission from the ionization fronts are both detected, and the high-resolution (0.″057) of the observations allows us to spatially isolate these two components. The morphology is unique compared to images at shorter (sub)millimeter wavelengths, which only detect the disks, and images at longer centimeter wavelengths, which only detect the ionization fronts. The disks are small (rd= 6.4–38 au), likely due to truncation by ongoing photoevaporation. They have low spectral indices (α≲ 2.1) measured between Bands 7 and 3, suggesting the dust emission is optically thick. They harbor tens of Earth masses of dust as computed from the millimeter flux using the standard method although their true masses may be larger due to the high optical depth. We derive their photoevaporative mass-loss rates in two ways: first, by invoking ionization equilibrium and second, by using the brightness of the free–free emission to compute the density of the outflow. We find decent agreement between these measurements andṀ= 0.6–18.4 × 10−7Myr−1. The photoevaporation timescales are generally shorter than the ∼1 Myr age of the ONC, underscoring the known “proplyd lifetime problem.” Disk masses that are underestimated due to being optically thick remains one explanation to ease this discrepancy.

    more » « less
  5. Abstract

    While dust disks around optically visible, Class II protostars are found to be vertically thin, when and how dust settles to the midplane are unclear. As part of the Atacama Large Millimeter/submillimeter Array large program, Early Planet Formation in Embedded Disks, we analyze the edge-on, embedded, Class I protostar IRAS 04302+2247, also nicknamed the “Butterfly Star.” With a resolution of 0.″05 (8 au), the 1.3 mm continuum shows an asymmetry along the minor axis that is evidence of an optically thick and geometrically thick disk viewed nearly edge-on. There is no evidence of rings and gaps, which could be due to the lack of radial substructure or the highly inclined and optically thick view. With 0.″1 (16 au) resolution, we resolve the 2D snow surfaces, i.e., the boundary region between freeze-out and sublimation, for12COJ= 2–1,13COJ= 2–1, C18OJ= 2–1,H2COJ= 30,3–20,2, and SOJ= 65–54, and constrain the CO midplane snow line to ∼130 au. We find Keplerian rotation around a protostar of 1.6 ± 0.4Musing C18O. Through forward ray-tracing using RADMC-3D, we find that the dust scale height is ∼6 au at a radius of 100 au from the central star and is comparable to the gas pressure scale height. The results suggest that the dust of this Class I source has yet to vertically settle significantly.

    more » « less