Determining the spatial distributions of species and communities is a key task in ecology and conservation efforts. Joint species distribution models are a fundamental tool in community ecology that use multi‐species detection–nondetection data to estimate species distributions and biodiversity metrics. The analysis of such data is complicated by residual correlations between species, imperfect detection, and spatial autocorrelation. While many methods exist to accommodate each of these complexities, there are few examples in the literature that address and explore all three complexities simultaneously. Here we developed a spatial factor multi‐species occupancy model to explicitly account for species correlations, imperfect detection, and spatial autocorrelation. The proposed model uses a spatial factor dimension reduction approach and Nearest Neighbor Gaussian Processes to ensure computational efficiency for data sets with both a large number of species (e.g., >100) and spatial locations (e.g., 100,000). We compared the proposed model performance to five alternative models, each addressing a subset of the three complexities. We implemented the proposed and alternative models in the
Effective conservation requires understanding species’ abundance patterns and demographic rates across space and time. Ideally, such knowledge should be available for whole communities because variation in species’ dynamics can elucidate factors leading to biodiversity losses. However, collecting data to simultaneously estimate abundance and demographic rates of communities of species is often prohibitively time intensive and expensive. We developed a multispecies dynamic
- Award ID(s):
- 1954406
- PAR ID:
- 10382760
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Conservation Biology
- Volume:
- 36
- Issue:
- 6
- ISSN:
- 0888-8892
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract spOccupancy software, designed to facilitate application via an accessible, well documented, and open‐source R package. Using simulations, we found that ignoring the three complexities when present leads to inferior model predictive performance, and the impacts of failing to account for one or more complexities will depend on the objectives of a given study. Using a case study on 98 bird species across the continental US, the spatial factor multi‐species occupancy model had the highest predictive performance among the alternative models. Our proposed framework, together with its implementation inspOccupancy , serves as a user‐friendly tool to understand spatial variation in species distributions and biodiversity while addressing common complexities in multi‐species detection–nondetection data. -
Abstract 1. The occurrence and distributions of wildlife populations and communities are shifting as a result of global changes. To evaluate whether these shifts are negatively impacting biodiversity processes, it is critical to monitor the status, trends and effects of environmental variables on entire communities. However, modelling the dynamics of multiple species simultaneously can require large amounts of diverse data, and few modelling approaches exist to simultaneously provide species and community‐level inferences.
2. We present an ‘integrated community occupancy model’ (ICOM) that unites principles of data integration and hierarchical community modelling in a single framework to provide inferences on species‐specific and community occurrence dynamics using multiple data sources. The ICOM combines replicated and nonreplicated detection–nondetection data sources using a hierarchical framework that explicitly accounts for different detection and sampling processes across data sources. We use simulations to compare the ICOM to previously developed hierarchical community occupancy models and single species integrated distribution models. We then apply our model to assess the occurrence and biodiversity dynamics of foliage‐gleaning birds in the White Mountain National Forest in the northeastern USA from 2010 to 2018 using three independent data sources.
3. Simulations reveal that integrating multiple data sources in the ICOM increased precision and accuracy of species and community‐level inferences compared to single data source models, although benefits of integration were dependent on the information content of individual data sources (e.g. amount of replication). Compared to single species models, the ICOM yielded more precise species‐level estimates. Within our case study, the ICOM had the highest out‐of‐sample predictive performance compared to single species models and models that used only a subset of the three data sources.
4. The ICOM provides more precise estimates of occurrence dynamics compared to multi‐species models using single data sources or integrated single‐species models. We further found that the ICOM had improved predictive performance across a broad region of interest with an empirical case study of forest birds. The ICOM offers an attractive approach to estimate species and biodiversity dynamics, which is additionally valuable to inform management objectives of both individual species and their broader communities.
-
Abstract Multispecies occupancy models estimate dependence among multiple species of interest from patterns of co‐occurrence, but problems associated with separation and boundary estimates can lead to unreasonably large estimates of parameters and associated standard errors when species are rarely observed at the same site or when data are sparse. In this paper, we overcome these issues by implementing a penalized likelihood, which introduces a small bias in parameter estimates in exchange for a potentially large reduction in variance. We compare parameter estimates obtained from both penalized and unpenalized multispecies occupancy models fit to simulated data that exhibit various degrees of separation and to a real‐word data set of bird surveys with little apparent overlap between potentially interacting species. Our simulation results demonstrate that penalized multispecies occupancy models did not exhibit boundary estimates and produced lower bias, lower mean squared error, and improved inference relative to unpenalized models. When applied to real‐world data, our penalized multispecies occupancy model constrained boundary estimates and allowed for meaningful inference related to the interactions of two species of conservation concern. To facilitate the use of our penalized multispecies occupancy model, the techniques demonstrated in this paper have been integrated into the
unmarked package in R programing language. -
Abstract Aim Quantifying abundance distributions is critical for understanding both how communities assemble, and how community structure varies through time and space, yet estimating abundances requires considerable investment in fieldwork. Community‐level population genetic data potentially offer a powerful way to indirectly infer richness, abundance and the history of accumulation of biodiversity within a community. Here we introduce a joint model linking neutral community assembly and comparative phylogeography to generate both community‐level richness, abundance and genetic variation under a neutral model, capturing both equilibrium and non‐equilibrium dynamics.
Location Global.
Methods Our model combines a forward‐time individual‐based community assembly process with a rescaled backward‐time neutral coalescent model of multi‐taxa population genetics. We explore general dynamics of genetic and abundance‐based summary statistics and use approximate Bayesian computation (
ABC ) to estimate parameters underlying the model of island community assembly. Finally, we demonstrate two applications of the model using community‐scale mtDNA sequence data and densely sampled abundances of an arachnid community on La Réunion. First, we use genetic data alone to estimate a summary of the abundance distribution, ground‐truthing this against the observed abundances. Then, we jointly use the observed genetic data and abundances to estimate the proximity of the community to equilibrium.Results Simulation experiments of our
ABC procedure demonstrate that coupling abundance with genetic data leads to improved accuracy and precision of model parameter estimates compared with using abundance‐only data. We further demonstrate reasonable precision and accuracy in estimating a metric underlying the shape of the abundance distribution, temporal progress towards local equilibrium and several key parameters of the community assembly process. For the insular arachnid assemblage, we find the joint distribution of genetic diversity and abundance approaches equilibrium expectations, and that the Shannon entropy of the observed abundances can be estimated using genetic data alone.Main conclusions The framework that we present unifies neutral community assembly and comparative phylogeography to characterize the community‐level distribution of both abundance and genetic variation through time, providing a resource that should greatly enhance understanding of both the processes structuring ecological communities and the associated aggregate demographic histories.
-
In structured populations, persistence under environmental change may be particularly threatened when abiotic factors simultaneously negatively affect survival and reproduction of several life cycle stages, as opposed to a single stage. Such effects can then be exacerbated when species interactions generate reciprocal feedbacks between the demographic rates of the different species. Despite the importance of such demographic feedbacks, forecasts that account for them are limited as individual-based data on interacting species are perceived to be essential for such mechanistic forecasting—but are rarely available. Here, we first review the current shortcomings in assessing demographic feedbacks in population and community dynamics. We then present an overview of advances in statistical tools that provide an opportunity to leverage population-level data on abundances of multiple species to infer stage-specific demography. Lastly, we showcase a state-of-the-art Bayesian method to infer and project stage-specific survival and reproduction for several interacting species in a Mediterranean shrub community. This case study shows that climate change threatens populations most strongly by changing the interaction effects of conspecific and heterospecific neighbours on both juvenile and adult survival. Thus, the repurposing of multi-species abundance data for mechanistic forecasting can substantially improve our understanding of emerging threats on biodiversity.more » « less