skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Growth Substrate and Prophage Induction Collectively Influence Metabolite and Lipid Profiles in a Marine Bacterium
ABSTRACT Bacterial growth substrates influence a variety of biological functions, including the biosynthesis and regulation of lipid intermediates. The extent of this rewiring is not well understood nor has it been considered in the context of virally infected cells. Here, we used a one-host-two-temperate phage model system to probe the combined influence of growth substrate and phage infection on host carbon and lipid metabolism. Using untargeted metabolomics and lipidomics, we reported the detection of a suite of metabolites and lipid classes for two Sulfitobacter lysogens provided with three growth substrates of differing complexity and nutrient composition (yeast extract/tryptone [complex], glutamate and acetate). The growth medium led to dramatic differences in the detectable intracellular metabolites, with only 15% of 175 measured metabolites showing overlap across the three growth substrates. Between-strain differences were most evident in the cultures grown on acetate, followed by glutamate then complex medium. Lipid distribution profiles were also distinct between cultures grown on different substrates as well as between the two lysogens grown in the same medium. Five phospholipids, three aminolipid, and one class of unknown lipid-like features were identified. Most (≥94%) of these 75 lipids were quantifiable in all samples. Metabolite and lipid profiles were strongly determined by growth medium composition and modestly by strain type. Because fluctuations in availability and form of carbon substrates and nutrients, as well as virus pressure, are common features of natural systems, the influence of these intersecting factors will undoubtedly be imprinted in the metabolome and lipidome of resident bacteria. IMPORTANCE Community-level metabolomics approaches are increasingly used to characterize natural microbial populations. These approaches typically depend upon temporal snapshots from which the status and function of communities are often inferred. Such inferences are typically drawn from lab-based studies of select model organisms raised under limited growth conditions. To better interpret community-level data, the extent to which ecologically relevant bacteria demonstrate metabolic flexibility requires elucidation. Herein, we used an environmentally relevant model heterotrophic marine bacterium to assess the relationship between growth determinants and metabolome. We also aimed to assess the contribution of phage activity to the host metabolome. Striking differences in primary metabolite and lipid profiles appeared to be driven primarily by growth regime and, secondarily, by phage type. These findings demonstrated the malleable nature of metabolomes and lipidomes and lay the foundation for future studies that relate cellular composition with function in complex environmental microbial communities.  more » « less
Award ID(s):
1737237
PAR ID:
10382871
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Gambino, Michela
Date Published:
Journal Name:
mSystems
Volume:
7
Issue:
5
ISSN:
2379-5077
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Data from: Untargeted Metabolomics Reveals Fruit Secondary Metabolites Alter Bat Nutrient Absorption; by Gelambi, M. & Whitehead, S. R. Published in the Journal of Chemical Ecology, 2024. Using a mutualistic fruit bat (Carollia perspicillata), our research explores how four secondary metabolites (piperine, tannin acid, eugenol, and phytol) commonly found in plant tissues affect the foraging behavior and induce changes in the fecal metabolome. In this study, bats were captured and housed in flight cages. Nightly trials exposed them to varying concentrations of secondary metabolites. Objective 1 involved non-choice trials to measure food consumption, while Objective 2 evaluated the impact of metabolite consumption on the bat fecal metabolome. Fecal samples were collected, stored, and later analyzed to understand how secondary metabolites influence bat behavior and metabolism. All the analyses were performed in R v. 4.2.1. 
    more » « less
  2. Abstract Survival and growth of the bovine conceptus is dependent on endometrial secretions or histotroph. Previously, serial blastocyst transfer was used to classify heifers as high fertile (HF), subfertile (SF), or infertile (IF). Here, we investigated specific histotroph components (proteins and metabolites) in the uterine lumen of day 17 fertility-classified heifers. Interferon tau (IFNT) was more abundant in uterine lumenal fluid (ULF) of pregnant HF than SF animals as the conceptus was longer in HF heifers. However, no differences in endometrial expression of selected classical and nonclassical interferon-stimulated genes (ISGs) were observed, suggesting that IFNT signaling in the endometrium of pregnant HF and SF heifers was similar. Pregnancy significantly increased the abundance of several proteins in ULF. Based on functional annotation, the abundance of a number of proteins involved in energy metabolism, oxidative stress, amino acid metabolism, and cell proliferation and differentiation were greater in the ULF of pregnant HF than SF heifers. Metabolomics analysis found that pregnancy only changed the metabolome composition of ULF from HF heifers. The majority of the metabolites that increased in the ULF of pregnant HF as compared to SF heifers were associated with energy and amino acid metabolism. The observed differences in ULF proteome and metabolome are hypothesized to influence uterine receptivity with consequences on conceptus development and survival in fertility-classified heifers. 
    more » « less
  3. Abstract Plants deploy both primary and species-specific, specialized metabolites to communicate with other organisms and adapt to environmental challenges, including interactions with soil-dwelling microbial communities. However, the role of specialized metabolites in modulating plant-microbiome interactions often remains elusive. In this study, we report that maize (Zea mays) diterpenoid metabolites with known antifungal bioactivities also influence rhizosphere bacterial communities. Metabolite profiling showed that dolabralexins, antibiotic diterpenoids that are highly abundant in roots of some maize varieties, can be exuded from the roots. Comparative 16S rRNA gene sequencing determined the bacterial community composition of the maize mutantZman2(anther ear 2), which is deficient in dolabralexins and closely related bioactive kauralexin diterpenoids. TheZman2rhizosphere microbiome differed significantly from the wild-type sibling with the most significant changes observed for Alphaproteobacteria of the order Sphingomonadales. Metabolomics analyses support that these differences are attributed to the diterpenoid deficiency of theZman2mutant, rather than other large-scale metabolome alterations. Together, these findings support physiological functions of maize diterpenoids beyond known chemical defenses, including the assembly of the rhizosphere microbiome. 
    more » « less
  4. Abstract Phytoplankton-derived metabolites fuel a large fraction of heterotrophic bacterial production in the global ocean, yet methodological challenges have limited our understanding of the organic molecules transferred between these microbial groups. In an experimental bloom study consisting of three heterotrophic marine bacteria growing together with the diatom Thalassiosira pseudonana, we concurrently measured diatom endometabolites (i.e., potential exometabolite supply) by nuclear magnetic resonance (NMR) spectroscopy and bacterial gene expression (i.e., potential exometabolite uptake) by metatranscriptomic sequencing. Twenty-two diatom endometabolites were annotated, with nine increasing in internal concentration in the late stage of the bloom, eight decreasing, and five showing no variation through the bloom progression. Some metabolite changes could be linked to shifts in diatom gene expression, as well as to shifts in bacterial community composition and their expression of substrate uptake and catabolism genes. Yet an overall low match indicated that endometabolome concentration was not a good predictor of exometabolite availability, and that complex physiological and ecological interactions underlie metabolite exchange. Six diatom endometabolites accumulated to higher concentrations in the bacterial co-cultures compared to axenic cultures, suggesting a bacterial influence on rates of synthesis or release of glutamate, arginine, leucine, 2,3-dihydroxypropane-1-sulfonate, glucose, and glycerol-3-phosphate. Better understanding of phytoplankton metabolite production, release, and transfer to assembled bacterial communities is key to untangling this nearly invisible yet pivotal step in ocean carbon cycling. 
    more » « less
  5. Siegel (Ed.)
    Intestinal microbiota confers susceptibility to diet-induced obesity yet many probiotic species that synthesize tryptophan (trp) actually attenuate this effect, however the underlying mechanisms are unclear. We monocolonized germ-free (GF) mice with a widely consumed probiotic Lacticaseibacillus rhamnosus GG (LGG) under trp-free or -sufficient dietary conditions. We obtained untargeted metabolomics from the mouse feces and serum using liquid chromatography-mass spectrometry and obtained intestinal transcriptomic profiles via bulk-RNA sequencing. When comparing LGG-monocolonized mice with GF mice, we found a synergy between LGG and dietary trp in markedly promoting the transcriptome of fatty acid metabolism and -oxidation. Upregulation was specific and was not observed in transcriptomes of trp-fed conventional mice and mice monocolonized with Ruminococcus gnavus. Metabolomics showed that fecal and serum metabolites were also modified by LGG-host-trp interaction. We developed an R-Script based MEtabolome-TRanscriptome Correlation Analysis (METRCA) algorithm and uncovered LGG- and trp-dependent metabolites that were positively or negatively correlated with fatty acid metabolism and -oxidation gene networks. This high throughput metabolome-transcriptome correlation strategy can be used in similar investigations to reveal potential interactions between specific metabolites and functional or disease-related transcriptomic networks. 
    more » « less