skip to main content


Title: Genetic diversity, heteroplasmy, and recombination in mitochondrial genomes in Daphnia pulex, Daphnia pulicaria, and Daphnia obtusa.
Genetic variants of mitochondrial DNA at the individual (heteroplasmy) and population (polymorphism) levels provide insight into their roles in multiple cellular and evolutionary processes. However, owing to the paucity of genome-wide data at the within-individual and population levels, the broad patterns of these two forms of variation remain poorly understood. Here, we analyze 1,804 complete mitochondrial genome sequences from Daphnia pulex, Daphnia pulicaria, and Daphnia obtusa. Extensive heteroplasmy is observed in D. obtusa, where the high level of intraclonal divergence must have resulted from a biparental-inheritance event, and recombination in the mitochondrial genome is apparent, although perhaps not widespread. Global samples of D. pulex reveal remarkably low mitochondrial effective population sizes, <3% of those for the nuclear genome. In addition, levels of population diversity in mitochondrial and nuclear genomes are uncorrelated across populations, suggesting an idiosyncratic evolutionary history of mitochondria in D. pulex. These population-genetic features appear to be a consequence of background selection associated with highly deleterious mutations arising in the strongly linked mitochondrial genome, which is consistent with polymorphism and divergence data suggesting a predominance of strong purifying selection. Nonetheless, the fixation of mildly deleterious mutations in the mitochondrial genome also appears to be driving positive selection on genes encoded in the nuclear genome whose products are deployed in the mitochondrion.  more » « less
Award ID(s):
1922914
NSF-PAR ID:
10382901
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Molecular biology and evolution
Volume:
39
Issue:
4
ISSN:
0737-4038
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Betancourt, Andrea (Ed.)
    Abstract Although obligately asexual lineages are thought to experience selective disadvantages associated with reduced efficiency of fixing beneficial mutations and purging deleterious mutations, such lineages are phylogenetically and geographically widespread. However, despite several genome-wide association studies, little is known about the genetic elements underlying the origin of obligate asexuality and how they spread. Because many obligately asexual lineages have hybrid origins, it has been suggested that asexuality is caused by the unbalanced expression of alleles from the hybridizing species. Here, we investigate this idea by identifying genes with allele-specific expression (ASE) in a Daphnia pulex population, in which obligate parthenogens (OP) and cyclical parthenogens (CP) coexist, with the OP clones having been originally derived from hybridization between CP D. pulex and its sister species, Daphnia pulicaria. OP D. pulex have significantly more ASE genes (ASEGs) than do CP D. pulex. Whole-genomic comparison of OP and CP clones revealed ∼15,000 OP-specific markers and 42 consistent ASEGs enriched in marker-defined regions. Ten of the 42 ASEGs have alleles coding for different protein sequences, suggesting functional differences between the products of the two parental alleles. At least three of these ten genes appear to be directly involved in meiosis-related processes, for example, RanBP2 can cause abnormal chromosome segregation in anaphase I, and the presence of Wee1 in immature oocytes leads to failure to enter meiosis II. These results provide a guide for future molecular resolution of the genetic basis of the transition to ameiotic parthenogenesis. 
    more » « less
  2. null (Ed.)
    Mutation rate in the nuclear genome differs between sexes, with males contributing more mutations than females to their offspring. The male-biased mutation rates in the nuclear genome is most likely to be driven by a higher number of cell divisions in spermatogenesis than in oogenesis, generating more opportunities for DNA replication errors. However, it remains unknown whether male-biased mutation rates are present in mitochondrial DNA (mtDNA). Although mtDNA is maternally inherited and male mtDNA mutation typically does not contribute to genetic variation in offspring, male mtDNA mutations are critical for male reproductive health. In this study, we measured male mtDNA mutation rate using publicly available whole-genome sequences of single sperm of the freshwater microcrustacean Daphnia pulex . Using a stringent mutation detection pipeline, we found that the male mtDNA mutation rate is 3.32 × 10 −6 per site per generation. All the detected mutations are heteroplasmic base substitutions, with 57% of mutations converting G/C to A/T nucleotides. Consistent with the male-biased mutation in the nuclear genome, the male mtDNA mutation rate in D. pulex is approximately 20 times higher than the female rate per generation. We propose that the elevated mutation rate per generation in male mtDNA is consistent with an increased number of cell divisions during male gametogenesis. 
    more » « less
  3. The ways in which genetic variation is distributed within and among populations is a key determinant of the evolutionary features of a species. However, most comprehensive studies of these features have been restricted to studies of subdivision in settings known to have been driven by local adaptation, leaving our understanding of the natural dispersion of allelic variation less than ideal. Here, we present a geographic population-genomic analysis of 10 populations of the freshwater microcrustacean Daphnia pulex, an emerging model system in evolutionary genomics. These populations exhibit a pattern of moderate isolation-by-distance, with an average migration rate of 0.6 individuals per generation, and average effective population sizes of ∼650,000 individuals. Most populations contain numerous private alleles, and genomic scans highlight the presence of islands of excessively high population subdivision for more common alleles. A large fraction of such islands of population divergence likely reflect historical neutral changes, including rare stochastic migration and hybridization events. The data do point to local adaptive divergence, although the precise nature of the relevant variation is diffuse and cannot be associated with particular loci, despite the very large sample sizes involved in this study. In contrast, an analysis of between-species divergence highlights positive selection operating on a large set of genes with functions nearly nonoverlapping with those involved in local adaptation, in particular ribosome structure, mitochondrial bioenergetics, light reception and response, detoxification, and gene regulation. These results set the stage for using D. pulex as a model for understanding the relationship between molecular and cellular evolution in the context of natural environments. 
    more » « less
  4. Abstract

    The field of genomics has ushered in new methods for studying molecular-genetic variation in natural populations. However, most population-genomic studies still rely on small sample sizes (typically, <100 individuals) from single time points, leaving considerable uncertainties with respect to the behavior of relatively young (and rare) alleles and, owing to the large sampling variance of measures of variation, to the specific gene targets of unusually strong selection. Genomic sequences of ∼1,700 haplotypes distributed over a 10-year period from a natural population of the microcrustacean Daphnia pulex reveal evolutionary-genomic features at a refined scale, including previously hidden information on the behavior of rare alleles predicted by recent theory. Background selection, resulting from the recurrent introduction of deleterious alleles, appears to strongly influence the dynamics of neutral alleles, inducing indirect negative selection on rare variants and positive selection on common variants. Temporally fluctuating selection increases the persistence of nonsynonymous alleles with intermediate frequencies, while reducing standing levels of variation at linked silent sites. Combined with the results from an equally large metapopulation survey of the study species, classes of genes that are under strong positive selection can now be confidently identified in this key model organism. Most notable among rapidly evolving Daphnia genes are those associated with ribosomes, mitochondrial functions, sensory systems, and lifespan determination.

     
    more » « less
  5. null (Ed.)
    Abstract Using data from 83 isolates from a single population, the population genomics of the microcrustacean Daphnia pulex are described and compared to current knowledge for the only other well-studied invertebrate, Drosophila melanogaster. These two species are quite similar with respect to effective population sizes and mutation rates, although some features of recombination appear to be different, with linkage disequilibrium being elevated at short (<100 bp) distances in D. melanogaster and at long distances in D. pulex. The study population adheres closely to the expectations under Hardy–Weinberg equilibrium, and reflects a past population history of no more than a twofold range of variation in effective population size. Fourfold redundant silent sites and a restricted region of intronic sites appear to evolve in a nearly neutral fashion, providing a powerful tool for population genetic analyses. Amino acid replacement sites are predominantly under strong purifying selection, as are a large fraction of sites in UTRs and intergenic regions, but the majority of SNPs at such sites that rise to frequencies >0.05 appear to evolve in a nearly neutral fashion. All forms of genomic sites (including replacement sites within codons, and intergenic and UTR regions) appear to be experiencing an ∼2× higher level of selection scaled to the power of drift in D. melanogaster, but this may in part be a consequence of recent demographic changes. These results establish D. pulex as an excellent system for future work on the evolutionary genomics of natural populations. 
    more » « less