skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Genetic diversity, heteroplasmy, and recombination in mitochondrial genomes in Daphnia pulex, Daphnia pulicaria, and Daphnia obtusa.
Genetic variants of mitochondrial DNA at the individual (heteroplasmy) and population (polymorphism) levels provide insight into their roles in multiple cellular and evolutionary processes. However, owing to the paucity of genome-wide data at the within-individual and population levels, the broad patterns of these two forms of variation remain poorly understood. Here, we analyze 1,804 complete mitochondrial genome sequences from Daphnia pulex, Daphnia pulicaria, and Daphnia obtusa. Extensive heteroplasmy is observed in D. obtusa, where the high level of intraclonal divergence must have resulted from a biparental-inheritance event, and recombination in the mitochondrial genome is apparent, although perhaps not widespread. Global samples of D. pulex reveal remarkably low mitochondrial effective population sizes, <3% of those for the nuclear genome. In addition, levels of population diversity in mitochondrial and nuclear genomes are uncorrelated across populations, suggesting an idiosyncratic evolutionary history of mitochondria in D. pulex. These population-genetic features appear to be a consequence of background selection associated with highly deleterious mutations arising in the strongly linked mitochondrial genome, which is consistent with polymorphism and divergence data suggesting a predominance of strong purifying selection. Nonetheless, the fixation of mildly deleterious mutations in the mitochondrial genome also appears to be driving positive selection on genes encoded in the nuclear genome whose products are deployed in the mitochondrion.  more » « less
Award ID(s):
1922914
PAR ID:
10382901
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Molecular biology and evolution
Volume:
39
Issue:
4
ISSN:
0737-4038
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Betancourt, Andrea (Ed.)
    Abstract Although obligately asexual lineages are thought to experience selective disadvantages associated with reduced efficiency of fixing beneficial mutations and purging deleterious mutations, such lineages are phylogenetically and geographically widespread. However, despite several genome-wide association studies, little is known about the genetic elements underlying the origin of obligate asexuality and how they spread. Because many obligately asexual lineages have hybrid origins, it has been suggested that asexuality is caused by the unbalanced expression of alleles from the hybridizing species. Here, we investigate this idea by identifying genes with allele-specific expression (ASE) in a Daphnia pulex population, in which obligate parthenogens (OP) and cyclical parthenogens (CP) coexist, with the OP clones having been originally derived from hybridization between CP D. pulex and its sister species, Daphnia pulicaria. OP D. pulex have significantly more ASE genes (ASEGs) than do CP D. pulex. Whole-genomic comparison of OP and CP clones revealed ∼15,000 OP-specific markers and 42 consistent ASEGs enriched in marker-defined regions. Ten of the 42 ASEGs have alleles coding for different protein sequences, suggesting functional differences between the products of the two parental alleles. At least three of these ten genes appear to be directly involved in meiosis-related processes, for example, RanBP2 can cause abnormal chromosome segregation in anaphase I, and the presence of Wee1 in immature oocytes leads to failure to enter meiosis II. These results provide a guide for future molecular resolution of the genetic basis of the transition to ameiotic parthenogenesis. 
    more » « less
  2. null (Ed.)
    Mutation rate in the nuclear genome differs between sexes, with males contributing more mutations than females to their offspring. The male-biased mutation rates in the nuclear genome is most likely to be driven by a higher number of cell divisions in spermatogenesis than in oogenesis, generating more opportunities for DNA replication errors. However, it remains unknown whether male-biased mutation rates are present in mitochondrial DNA (mtDNA). Although mtDNA is maternally inherited and male mtDNA mutation typically does not contribute to genetic variation in offspring, male mtDNA mutations are critical for male reproductive health. In this study, we measured male mtDNA mutation rate using publicly available whole-genome sequences of single sperm of the freshwater microcrustacean Daphnia pulex . Using a stringent mutation detection pipeline, we found that the male mtDNA mutation rate is 3.32 × 10 −6 per site per generation. All the detected mutations are heteroplasmic base substitutions, with 57% of mutations converting G/C to A/T nucleotides. Consistent with the male-biased mutation in the nuclear genome, the male mtDNA mutation rate in D. pulex is approximately 20 times higher than the female rate per generation. We propose that the elevated mutation rate per generation in male mtDNA is consistent with an increased number of cell divisions during male gametogenesis. 
    more » « less
  3. ABSTRACT Shared polymorphisms, loci with identical alleles across species, are of unique interest in evolutionary biology as they may represent cases of selection maintaining ancient genetic variation post‐speciation, or contemporary selection promoting convergent evolution. In this study, we investigate the abundance of shared polymorphism between two members of theDaphnia pulexspecies complex. We test whether the presence of shared mutations is consistent with the action of balancing selection or alternative hypotheses such as hybridization, incomplete lineage sorting or convergent evolution. We analyzed over 2,000 genomes from six taxa in theD. pulexspecies group and examined the prevalence and distribution of shared alleles between the focal species pair, North American and EuropeanD. pulex. We show that North American and EuropeanD. pulexdiverged over 10 million years ago, yet retained tens of thousands of shared polymorphisms. We suggest that the number of shared polymorphisms between North American and EuropeanD. pulexcannot be fully explained by hybridization or incomplete lineage sorting alone. We show that most shared polymorphisms could be the product of convergent evolution, that a limited number appear to be old trans‐specific polymorphisms, and that balancing selection is affecting convergent and ancient mutations alike. Finally, we provide evidence that a blue wavelength opsin gene with trans‐specific polymorphisms has functional effects on behavior and fitness in the wild. 
    more » « less
  4. Abstract Studies of closely related species with known ecological differences provide exceptional opportunities for understanding the genetic mechanisms of evolution. In this study, we compared population-genomics data between Daphnia pulex and Daphnia pulicaria, two reproductively compatible sister species experiencing ecological speciation, the first largely confined to intermittent ponds and the second to permanent lakes in the same geographic region. Daphnia pulicaria has lower genome-wide nucleotide diversity, a smaller effective population size, a higher incidence of private alleles, and a substantially more linkage disequilibrium than D. pulex. Positively selected genes in D. pulicaria are enriched in potentially aging-related categories such as cellular homeostasis, which may explain the extended life span in D. pulicaria. We also found that opsin-related genes, which may mediate photoperiodic responses, are under different selection pressures in these two species. Genes involved in mitochondrial functions, ribosomes, and responses to environmental stimuli are found to be under positive selection in both species. Additionally, we found that the two species have similar average evolutionary rates at the DNA-sequence level, although approximately 160 genes have significantly different rates in the two lineages. Our results provide insights into the physiological traits that differ within this regionally sympatric sister-species pair that occupies unique microhabitats. 
    more » « less
  5. null (Ed.)
    Abstract Using data from 83 isolates from a single population, the population genomics of the microcrustacean Daphnia pulex are described and compared to current knowledge for the only other well-studied invertebrate, Drosophila melanogaster. These two species are quite similar with respect to effective population sizes and mutation rates, although some features of recombination appear to be different, with linkage disequilibrium being elevated at short (<100 bp) distances in D. melanogaster and at long distances in D. pulex. The study population adheres closely to the expectations under Hardy–Weinberg equilibrium, and reflects a past population history of no more than a twofold range of variation in effective population size. Fourfold redundant silent sites and a restricted region of intronic sites appear to evolve in a nearly neutral fashion, providing a powerful tool for population genetic analyses. Amino acid replacement sites are predominantly under strong purifying selection, as are a large fraction of sites in UTRs and intergenic regions, but the majority of SNPs at such sites that rise to frequencies >0.05 appear to evolve in a nearly neutral fashion. All forms of genomic sites (including replacement sites within codons, and intergenic and UTR regions) appear to be experiencing an ∼2× higher level of selection scaled to the power of drift in D. melanogaster, but this may in part be a consequence of recent demographic changes. These results establish D. pulex as an excellent system for future work on the evolutionary genomics of natural populations. 
    more » « less