skip to main content

Title: An Energy Minimization Approach to Twinning with Variable Volume Fraction
Abstract

In materials that undergo martensitic phase transformation, macroscopic loading often leads to the creation and/or rearrangement of elastic domains. This paper considers an example involving a single-crystal slab made from two martensite variants. When the slab is made to bend, the two variants form a characteristic microstructure that we like to call “twinning with variable volume fraction.” Two 1996 papers by Chopra et al. explored this example using bars made from InTl, providing considerable detail about the microstructures they observed. Here we offer an energy-minimization-based model that is motivated by their account. It uses geometrically linear elasticity, and treats the phase boundaries as sharp interfaces. For simplicity, rather than model the experimental forces and boundary conditions exactly, we consider certain Dirichlet or Neumann boundary conditions whose effect is to require bending. This leads to certain nonlinear (and nonconvex) variational problems that represent the minimization of elastic plus surface energy (and the work done by the load, in the case of a Neumann boundary condition). Our results identify how the minimum value of each variational problem scales with respect to the surface energy density. The results are established by proving upper and lower bounds that scale the same way. The more » upper bounds are ansatz-based, providing full details about some (nearly) optimal microstructures. The lower bounds are ansatz-free, so they explain why no other arrangement of the two phases could be significantly better.

« less
Authors:
; ;
Publication Date:
NSF-PAR ID:
10383040
Journal Name:
Journal of Elasticity
ISSN:
0374-3535
Publisher:
Springer Science + Business Media
Sponsoring Org:
National Science Foundation
More Like this
  1. Ball, J. (Ed.)
    In materials that undergo martensitic phase transformation, distinct elastic phases often form layered microstructures — a phenomenon known as twinning. In some settings the volume fractions of the phases vary macroscopically; this has been seen, in particular, in experiments involving the bending of a bar. We study a two-dimensional (2D) model problem of this type, involving two geometrically nonlinear phases with a single rank-one connection. We adopt a variational perspective, focusing on the minimization of elastic plus surface energy. To get started, we show that twinning with variable volume fraction must occur when bending is imposed by a Dirichlet-type boundary condition. We then turn to paper’s main goal, which is to determine how the minimum energy scales with respect to the surface energy density and the transformation strain. Our analysis combines ansatz-based upper bounds with ansatz-free lower bounds. For the upper bounds we consider two very different candidates for the microstructure: one that involves self-similar refinement of its length scale near the boundary, and another based on piecewise-linear approximation with a single length scale. Our lower bounds adapt methods previously introduced by Chan and Conti to address a problem involving twinning with constant volume fraction. The energy minimization problem considered inmore »this paper is not intended to model twinning with variable volume fraction involving two martensite variants; rather, it provides a convenient starting point for the development of a mathematical toolkit for the study of twinning with variable volume fraction.« less
  2. Mechanical behavior of materials with granular microstructures is confounded by unique features of their grain-scale mechano-morphology, such as the tension–compression asymmetry of grain interactions and irregular grain structure. Continuum models, necessary for the macro-scale description of these materials, must link to the grain-scale behavior to describe the consequences of this mechano-morphology. Here, we consider the damage behavior of these materials based upon purely mechanical concepts utilizing energy and variational approach. Granular micromechanics is accounted for through Piola’s ansatz and objective kinematic descriptors obtained for grain-pair relative displacement in granular materials undergoing finite deformations. Karush–Kuhn–Tucker (KKT)-type conditions that provide the evolution equations for grain-pair damage and Euler–Lagrange equations for evolution of grain-pair relative displacement are derived based upon a non-standard (hemivariational) variational approach. The model applicability is illustrated for particular form of grain-pair elastic energy and dissipation functionals through numerical examples. Results show interesting damage-induced anisotropy evolution including the emergence of a type of chiral behavior and formation of finite localization zones.
  3. Recent direct numerical simulations (DNS) and computations of exact steady solutions suggest that the heat transport in Rayleigh–Bénard convection (RBC) exhibits the classical 1 / 3 scaling as the Rayleigh number R a → ∞ with Prandtl number unity, consistent with Malkus–Howard’s marginally stable boundary layer theory. Here, we construct conditional upper and lower bounds for heat transport in two-dimensional RBC subject to a physically motivated marginal linear-stability constraint. The upper estimate is derived using the Constantin–Doering–Hopf (CDH) variational framework for RBC with stress-free boundary conditions, while the lower estimate is developed for both stress-free and no-slip boundary conditions. The resulting optimization problems are solved numerically using a time-stepping algorithm. Our results indicate that the upper heat-flux estimate follows the same 5 / 12 scaling as the rigorous CDH upper bound for the two-dimensional stress-free case, indicating that the linear-stability constraint fails to modify the boundary-layer thickness of the mean temperature profile. By contrast, the lower estimate successfully captures the 1 / 3 scaling for both the stress-free and no-slip cases. These estimates are tested using marginally-stable equilibrium solutions obtained under the quasi-linear approximation, steady roll solutions and DNS data. This article is part of the theme issue ‘Mathematical problemsmore »in physical fluid dynamics (part 1)’.« less
  4. We prove the Turaev-Viro invariants volume conjecture for a "universal" class of cusped hyperbolic 3-manifolds that produces all 3-manifolds with empty or toroidal boundary by Dehn filling. This leads to two-sided bounds on the volume of any hyperbolic 3-manifold with empty or toroidal boundary in terms of the growth rate of the Turaev-Viro invariants of the complement of an appropriate link contained in the manifold. We also provide evidence for a conjecture of Andersen, Masbaum and Ueno (AMU conjecture) about certain quantum representations of surface mapping class groups. A key step in our proofs is finding a sharp upper bound on the growth rate of the quantum 6j−symbol evaluated at q=e2πir.
  5. We prove the Turaev-Viro invariants volume conjecture for a "universal" class of cusped hyperbolic 3-manifolds that produces all 3-manifolds with empty or toroidal boundary by Dehn filling. This leads to two-sided bounds on the volume of any hyperbolic 3-manifold with empty or toroidal boundary in terms of the growth rate of the Turaev-Viro invariants of the complement of an appropriate link contained in the manifold. We also provide evidence for a conjecture of Andersen, Masbaum and Ueno (AMU conjecture) about certain quantum representations of surface mapping class groups. A key step in our proofs is finding a sharp upper bound on the growth rate of the quantum 6j−symbol evaluated at q=e2πir.