skip to main content


Title: The half-mass radius of MaNGA galaxies: effect of IMF gradients
ABSTRACT

Gradients in the stellar populations (SP) of galaxies – e.g. in age, metallicity, stellar initial mass function (IMF) – can result in gradients in the stellar-mass-to-light ratio, M*/L. Such gradients imply that the distribution of the stellar mass and light is different. For old SPs, e.g. in early-type galaxies at z ∼ 0, the M*/L gradients are weak if driven by variations in age and metallicity, but significantly larger if driven by the IMF. A gradient which has larger M*/L in the centre increases the estimated total stellar mass (M*) and reduces the scale which contains half this mass (Re,*), compared to when the gradient is ignored. For the IMF gradients inferred from fitting MILES simple SP models to the H β, 〈Fe〉, [MgFe], and TiO2SDSS absorption lines measured in spatially resolved spectra of early-type galaxies in the MaNGA survey, the fractional change in Re,* can be significantly larger than that in M*, especially when the light is more centrally concentrated. The Re,*–M* correlation which results from accounting for IMF gradients is offset to smaller sizes by 0.3 dex compared to when these gradients are ignored. Comparisons with ‘quiescent’ galaxies at higher z must account for evolution in SP gradients (especially age and IMF) and in the light profile before drawing conclusions about how Re,* and M* evolve. The implied merging between higher z and the present is less contrived if Re,*/Re at z ∼ 0 is closer to our IMF-driven gradient calibration than to unity.

 
more » « less
NSF-PAR ID:
10383041
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
518
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 3494-3508
Size(s):
["p. 3494-3508"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We study systematics associated with estimating simple stellar population (SSP) parameters – age, metallicity [M/H], α-enhancement [α/Fe], and initial mass function (IMF) shape – and associated M*/L gradients, of elliptical slow rotators (E-SRs), fast rotators (E-FRs), and S0s from stacked spectra of galaxies in the MaNGA survey. These systematics arise from (i) how one normalizes the spectra when stacking; (ii) having to subtract emission before estimating absorption line strengths; (iii) the decision to fit the whole spectrum or just a few absorption lines; (iv) SSP model differences (e.g. isochrones, enrichment, IMF). The MILES+Padova SSP models, fit to the Hβ, 〈Fe〉, TiO2SDSS, and [MgFe] Lick indices in the stacks, indicate that out to the half-light radius Re: (a) ages are younger and [α/Fe] values are lower in the central regions but the opposite is true of [M/H]; (b) the IMF is more bottom-heavy in the center, but is close to Kroupa beyond about Re/2; (c) this makes M*/L about 2 × larger in the central regions than beyond Re/2. While the models of Conroy et al. return similar [M/H] and [α/Fe] profiles, the age and (hence) M*/L profiles can differ significantly even for solar abundances and a Kroupa IMF; different responses to non-solar abundances and IMF parametrization further compound these differences. There are clear (model independent) differences between E-SRs, E-FRs, and S0s: younger ages and less enhanced [α/Fe] values suggest that E-FRs and S0s are not SSPs, but relaxing this assumption is unlikely to change their inferred M*/L gradients significantly.

     
    more » « less
  2. Abstract This is the third paper of a series where we study the stellar population gradients (SP; ages, metallicities, α-element abundance ratios and stellar initial mass functions) of early type galaxies (ETGs) at z ≤ 0.08 from the MaNGA-DR15 survey. In this work we focus on the S0 population and quantify how the SP varies across the population as well as with galactocentric distance. We do this by measuring Lick indices and comparing them to stellar population synthesis models. This requires spectra with high signal-to-noise which we achieve by stacking in bins of luminosity (Lr) and central velocity dispersion (σ0). We find that: 1) There is a bimodality in the S0 population: S0s more massive than 3 × 1010M⊙ show stronger velocity dispersion and age gradients (age and σr decrease outwards) but little or no metallicity gradient, while the less massive ones present relatively flat age and velocity dispersion profiles, but a significant metallicity gradient (i.e. [M/H] decreases outwards). Above 2 × 1011M⊙ the number of S0s drops sharply. These two mass scales are also where global scaling relations of ETGs change slope. 2) S0s have steeper velocity dispersion profiles than fast rotating elliptical galaxies (E-FRs) of the same luminosity and velocity dispersion. The kinematic profiles and stellar population gradients of E-FRs are both more similar to those of slow rotating ellipticals (E-SRs) than to S0s, suggesting that E-FRs are not simply S0s viewed face-on. 3) At fixed σ0, more luminous S0s and E-FRs are younger, more metal rich and less α-enhanced. Evidently for these galaxies, the usual statement that ‘massive galaxies are older’ is not true if σ0 is held fixed. 
    more » « less
  3. ABSTRACT We present estimates of stellar population (SP) gradients from stacked spectra of slow rotator (SR) and fast rotator (SR) elliptical galaxies from the MaNGA-DR15 survey. We find that (1) FRs are ∼5 Gyr younger, more metal rich, less α-enhanced and smaller than SRs of the same luminosity Lr and central velocity dispersion σ0. This explains why when one combines SRs and FRs, objects which are small for their Lr and σ0 tend to be younger. Their SP gradients are also different. (2) Ignoring the FR/SR dichotomy leads one to conclude that compact galaxies are older than their larger counterparts of the same mass, even though almost the opposite is true for FRs and SRs individually. (3) SRs with σ0 ≤ 250 km s−1 are remarkably homogeneous within ∼Re: they are old, α-enhanced, and only slightly supersolar in metallicity. These SRs show no gradients in age and M*/Lr, negative gradients in metallicity, and slightly positive gradients in [α/Fe] (the latter are model dependent). SRs with σ0 ≥ 250 km s−1 are slightly younger and more metal rich, contradicting previous work suggesting that age increases with σ0. They also show larger M*/Lr gradients. (4) Self-consistently accounting for M*/L gradients yields Mdyn ≈ M* because gradients reduce Mdyn by ∼0.2 dex while only slightly increasing the M* inferred using a Kroupa (not Salpeter) initial mass function. (5) The SR population starts to dominate the counts above $M_*\ge 3\times 10^{11}\, \mathrm{M}_\odot$; this is the same scale at which the size–mass correlation and other scaling relations change. Our results support the finding that this is an important mass scale that correlates with the environment and above which mergers matter. 
    more » « less
  4. Abstract

    In this work, we publish stellar velocity dispersions, sizes, and dynamical masses for eight ultramassive galaxies (UMGs;log(M*/M)> 11),z≳ 3) from the Massive Ancient Galaxies Atz> 3 NEar-infrared (MAGAZ3NE) Survey, more than doubling the number of such galaxies with velocity dispersion measurements at this epoch. Using the deep Keck/MOSFIRE and Keck/NIRES spectroscopy of these objects in theHandKbandpasses, we obtain large velocity dispersions of ∼400 km s−1for most of the objects, which are some of the highest stellar velocity dispersions measured and ∼40% larger than those measured for galaxies of similar mass atz∼ 1.7. The sizes of these objects are also smaller by a factor of 1.5–3 compared to this samez∼ 1.7 sample. We combine these large velocity dispersions and small sizes to obtain dynamical masses. The dynamical masses are similar to the stellar masses of these galaxies, consistent with a Chabrier initial mass function (IMF). Considered alongside previous studies of massive quiescent galaxies across 0.2 <z< 4.0, there is evidence for an evolution in the relation between the dynamical mass–stellar mass ratio and velocity dispersion as a function of redshift. This implies an IMF with fewer low-mass stars (e.g., Chabrier IMF) for massive quiescent galaxies at higher redshifts in conflict with the bottom-heavy IMF (e.g., Salpeter IMF) found in their likelyz∼ 0 descendants, though a number of alternative explanations such as a different dynamical structure or significant rotation are not ruled out. Similar to data at lower redshifts, we see evidence for an increase of IMF normalization with velocity dispersion, though thez≳ 3 trend is steeper than that forz∼ 0.2 early-type galaxies and offset to lower dynamical-to-stellar mass ratios.

     
    more » « less
  5. Abstract

    The stellar initial mass function (IMF) is a fundamental property in the measurement of stellar masses and galaxy star formation histories. In this work, we focus on the most massive galaxies in the nearby universelog(M/M)>11.2. We obtain high-quality Magellan/LDSS-3 long-slit spectroscopy with a wide wavelength coverage of 0.4–1.01μm for 41 early-type galaxies (ETGs) in the MASSIVE survey and derive high signal-to-noise spectra within an aperture ofRe/8. Using detailed stellar synthesis models, we constrain the elemental abundances and stellar IMF of each galaxy through full spectral modeling. All the ETGs in our sample have an IMF that is steeper than a Milky Way (Kroupa) IMF. The best-fit IMF mismatch parameter,αIMF= (M/L)/(M/L)MW, ranges from 1.1 to 3.1, with an average of 〈αIMF〉 = 1.84, suggesting that on average, the IMF is more bottom heavy than Salpeter. Comparing the estimated stellar masses with the dynamical masses, we find that most galaxies have stellar masses that are smaller than their dynamical masses within the 1σuncertainty. We complement our sample with lower-mass galaxies from the literature and confirm thatlog(αIMF)is positively correlated withlog(σ),log(M), andlog(Mdyn). From the combined sample, we show that the IMF in the centers of more massive ETGs is more bottom heavy. In addition, we find thatlog(αIMF)is positively correlated with both [Mg/Fe] and the estimated total metallicity [Z/H]. We find suggestive evidence that the effective stellar surface density ΣKroupamight be responsible for the variation ofαIMF. We conclude thatσ, [Mg/Fe], and [Z/H] are the primary drivers of the global stellar IMF variation.

     
    more » « less