skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: Alveolar epithelial cells and microenvironmental stiffness synergistically drive fibroblast activation in three-dimensional hydrogel lung models
Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease that progressively and irreversibly alters the lung parenchyma, eventually leading to respiratory failure. The study of this disease has been historically challenging due to the myriad of complex processes that contribute to fibrogenesis and the inherent difficulty in accurately recreating the human pulmonary environment in vitro . Here, we describe a poly(ethylene glycol) PEG hydrogel-based three-dimensional model for the co-culture of primary murine pulmonary fibroblasts and alveolar epithelial cells that reproduces the micro-architecture, cell placement, and mechanical properties of healthy and fibrotic lung tissue. Co-cultured cells retained normal levels of viability up to at least three weeks and displayed differentiation patterns observed in vivo during IPF progression. Interrogation of protein and gene expression within this model showed that myofibroblast activation required both extracellular mechanical cues and the presence of alveolar epithelial cells. Differences in gene expression indicated that cellular co-culture induced TGF-β signaling and proliferative gene expression, while microenvironmental stiffness upregulated the expression of genes related to cell–ECM interactions. This biomaterial-based cell culture system serves as a significant step forward in the accurate recapitulation of human lung tissue in vitro and highlights the need to incorporate multiple factors that work together synergistically in vivo into models of lung biology of health and disease.  more » « less
Award ID(s):
1941401
NSF-PAR ID:
10383044
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Biomaterials Science
ISSN:
2047-4830
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The interactions between immune cells and epithelial cells influence the progression of many respiratory diseases, such as chronic obstructive pulmonary disease (COPD). In vitro models allow for the examination of cells in controlled environments. However, these models lack the complex 3D architecture and vast multicellular interactions between the lung resident cells and infiltrating immune cells that can mediate cellular response to insults. In this study, three complementary microphysiological systems are presented to delineate the effects of cigarette smoke and respiratory disease on the lung epithelium. First, the Transwell system allows the co‐culture of pulmonary immune and epithelial cells to evaluate cellular and monolayer phenotypic changes in response to cigarette smoke exposure. Next, the human and mouse precision‐cut lung slices system provides a physiologically relevant model to study the effects of chronic insults like cigarette smoke with the dissection of specific interaction of immune cell subtypes within the structurally complex tissue environment. Finally, the lung‐on‐a‐chip model provides an adaptable system for live imaging of polarized epithelial tissues that mimic the in vivo environment of the airways. Using a combination of these models, a complementary approach is provided to better address the intricate mechanisms of lung disease.

     
    more » « less
  2. Abstract

    Epithelial cell organoids have increased opportunities to probe questions on tissue development and disease in vitro and for therapeutic cell transplantation. Despite their potential, current protocols to grow these organoids almost exclusively depend on culture within 3D Matrigel, which limits defined culture conditions, introduces animal components, and results in heterogenous organoids (i.e., shape, size, composition). Here, a method is described that relies on hyaluronic acid hydrogels for the generation and expansion of lung alveolar organoids (alveolospheres). Using synthetic hydrogels with defined chemical and physical properties, human‐induced pluripotent stem cell (iPSC)‐derived alveolar type 2 cells (iAT2s) self‐assemble into alveolospheres and propagate in Matrigel‐free conditions. By engineering predefined microcavities within these hydrogels, the heterogeneity of alveolosphere size and structure is reduced when compared to 3D culture, while maintaining the alveolar type 2 cell fate of human iAT2‐derived progenitor cells. This hydrogel system is a facile and accessible system for the culture of iPSC‐derived lung progenitors and the method can be expanded to the culture of primary mouse tissue derived AT2 and other epithelial progenitor and stem cell aggregates.

     
    more » « less
  3. null (Ed.)
    Idiopathic Pulmonary Fibrosis (IPF) is a chronically progressive interstitial lung that affects over 3 M people worldwide and rising in incidence. With a median survival of 2–3 years, IPF is consequently associated with high morbidity, mortality, and healthcare burden. Although two antifibrotic therapies, pirfenidone and nintedanib, are approved for human use, these agents reduce the rate of decline of pulmonary function but are not curative and do not reverse established fibrosis. In this review, we discuss the prevailing epithelial injury hypothesis, wherein pathogenic airway epithelial cell-state changes known as Epithelial Mesenchymal Transition (EMT) promotes the expansion of myofibroblast populations. Myofibroblasts are principal components of extracellular matrix production that result in airspace loss and mortality. We review the epigenetic transition driving EMT, a process produced by changes in histone acetylation regulating mesenchymal gene expression programs. This mechanistic work has focused on the central role of bromodomain-containing protein 4 in mediating EMT and myofibroblast transition and initial preclinical work has provided evidence of efficacy. As nanomedicine presents a promising approach to enhancing the efficacy of such anti-IPF agents, we then focus on the state of nanomedicine formulations for inhalable delivery in the treatment of pulmonary diseases, including liposomes, polymeric nanoparticles (NPs), inorganic NPs, and exosomes. These nanoscale agents potentially provide unique properties to existing pulmonary therapeutics, including controlled release, reduced systemic toxicity, and combination delivery. NP-based approaches for pulmonary delivery thus offer substantial promise to modify epigenetic regulators of EMT and advance treatments for IPF. 
    more » « less
  4. 2938 Using a Human Liver Tissue Equivalent (hLTE) Platform to Define the Functional Impact of Liver-Directed AAV Gene Therapy 63rd ASH Annual Meeting and Exposition, December 11-14, 2021, Georgia World Congress Center, Atlanta, GA Program: Oral and Poster Abstracts Session: 801. Gene Therapies: Poster II Hematology Disease Topics & Pathways: Bleeding and Clotting, Biological, Translational Research, Hemophilia, Genetic Disorders, Clinically Relevant, Diseases, Gene Therapy, Therapies Sunday, December 12, 2021, 6:00 PM-8:00 PM Ritu M Ramamurthy1*, Wen Ting Zheng2*, Sunil George, PhD1*, Meimei Wan1*, Yu Zhou, PhD1*, Baisong Lu, PhD1*, Colin E Bishop, PhD1*, Anthony Atala, M.D.1*, Christopher D Porada, PhD1* and M. Graca Almeida-Porada, MD3 1Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC 2Massachusetts Institute of Technology, Cambridge, MA 3Fetal Research and Therapy Program, Wake Forest Institute For Regenerative Medicine, Winston-Salem, NC Clinical trials employing AAV vectors for hemophilia A have been hindered by unanticipated immunological and/or inflammatory responses in some of the patients. Also, these trials have often yielded lower levels of transgene expression than were expected based upon preclinical studies, highlighting the poor correlation between the transduction efficiency observed in traditional 2D cultures of primary cells in vitro, and that observed in those same cell types in vivo. It has been also recognized that there are marked species-specific differences in AAV-vector tropism, raising the critical question of the accuracy with which various animal models will likely predict tropism/vector transduction efficiency, and eventual treatment success in humans. Human liver tissue equivalents (hLTEs) are comprised of major cell types in the liver in physiologically relevant frequencies and possess the ability to recapitulate the biology and function of native human liver. Here, we hypothesize that hLTEs can be used as a better model to predict the efficacy and safety of AAV gene therapy in humans. We fabricated hLTEs using 75% hepatocytes, 10% stellate cells, 10% Kupffer cells, and 5% liver sinusoid-derived endothelial cells in 96-well Elplasia plates with 79 microwells per well. hLTEs were transduced at an MOI of 105vg/cell, on the day of fabrication, with the clinically relevant serotypes AAV5 (hLTE-5) or AAV3b (hLTE-3b), both encoding a GFP reporter. After 4 days of self-aggregation, live/dead assay was performed to confirm viability. Non-transduced hLTEs served as negative controls (hLTE(-)), and hLTEs exposed to 20 mM acetaminophen were used as positive controls for liver inflammation/damage. Incucyte® Live-Cell Imaging system was used to track the aggregation and GFP expression of hLTEs. Over the course of the next 5 days, media was collected to determine hepatic functionality, RNA was isolated to assess dysregulation of genes involved in inflammation and fibrosis, DNA was isolated to determine whether AAV vectors integrate into the genome of human hepatocytes and, if so, to define the frequency at which this occurs and the genomic loci of integration, and hLTEs were fixed and processed at appropriate times for histological analyses and transmission electron microscopy (TEM). TEM analysis revealed that all groups exhibited microvilli and bile-canaliculus-like structures, demonstrating the formation of a rudimentary biliary system and, more importantly, proving that hLTEs resemble native liver structure. Incucyte® imaging showed that AAV5 and AAV3b transduction impaired formation of hLTEs (57.57 ± 2.42 and 24.57 ± 4.01 spheroids/well, respectively) in comparison with hLTE(-) (74.86 ± 3.8 spheroids/well). Quantification of GFP expression demonstrated that AAV5 yielded the most efficient transduction of hLTEs (fold change in GFP expression compared to control: 2.73 ± 0.09 and 1.19 ± 0.03 for hLTE-5 and hLTE-3b, respectively). Chromogenic assays showed decreased urea production in cell culture supernatants of AAV transduced groups compared to the non-transduced hLTEs on days 6 and 10 of culture, demonstrating decreased hepatocyte functionality. However, ALT and AST levels were similar in all groups. On day 10, hLTEs were either used for RNA isolation or fixed in 4% PFA and processed for histology. Masson’s Trichrome and Alcian Blue/Sirius Red staining was performed to detect fibrosis, which was then quantified using ImageJ. These analyses showed no significant increase in fibrosis in either hLTE-5 or hLTE-3b compared to hLTE(-). Nevertheless, RT2 PCR Array for Human Fibrosis detected dysregulation of several genes involved in fibrosis/inflammation in both hLTE-5 and hLTE-3b (16/84 and 26/84, respectively). In conclusion, data collected thus far show successful recapitulation of native liver biology and demonstrate that AAV5 transduces hLTEs more efficiently than AAV3b. However, impaired self-aggregation and decreased hepatocyte functionality was observed in both AAV-transduced groups. Studies to address the incidence and location(s) of AAV integration are ongoing. We have thus shown that the hLTE system can provide critical new knowledge regarding the efficacy and safety of AAV gene therapy in the human liver. Disclosures: No relevant conflicts of interest to declare. 
    more » « less
  5. Since its invention in the late 1980s, the air-liquid-interface (ALI) culture system has been the standard in vitro model for studying human airway biology and pulmonary diseases. However, in a conventional ALI system, cells are cultured on a porous plastic membrane that is much stiffer than human airway tissues. Here, we develop a gel-ALI culture system by simply coating the plastic membrane with a thin layer of hydrogel with tunable stiffness matching that of healthy and fibrotic airway tissues. We determine the optimum gel thickness that does not impair the transport of nutrients and biomolecules essential to cell growth. We show that the gel-ALI system allows human bronchial epithelial cells (HBECs) to proliferate and differentiate into a pseudostratified epithelium. Further, we discover that HBECs migrate significantly faster on hydrogel substrates with stiffness matching that of fibrotic lung tissues, highlighting the importance of mechanical cues in human airway remodeling. The developed gel-ALI system provides a facile approach to studying the effects of mechanical cues in human airway biology and in modeling pulmonary diseases.

     
    more » « less