skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Self-publishing Biodiversity Data Products on the Web
Biodiversity informatics workbenches and aggregators that make their data externally accessible via application programming interfaces (APIs) facilitate the development of customized applications that fit the needs of a diverse range of communities. In the past, the technical skills required to host web-facing applications placed constraints on many researchers: they either needed to find technical help, or expand their own skills. These limits are now significantly reduced when free or low-cost web-site hosting is combined with small, well-documented applications that require minimal configuration to setup. We illustrate two applications that take advantage of this approach: an interactive key engine (presently named "distinguish") and TaxonPages, a taxon page service application. Both applications make use of TaxonWorks' API. We discuss the limits, e.g., the user must be online to access the data behind the application, and advantages of this approach, e.g., the application server can be served locally, on the users' own computer, and the underlying data are all accessible in more technical formats.  more » « less
Award ID(s):
1639601
PAR ID:
10383099
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Biodiversity Information Science and Standards
Volume:
6
ISSN:
2535-0897
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While coursework provides undergraduate data science students with some relevant analytic skills, many are not given the rich experiences with data and computing they need to be successful in the workplace. Additionally, students often have limited exposure to team-based data science and the principles and tools of collaboration that are encountered outside of school.In this paper, we describe the DSC-WAV program, an NSF-funded data science workforce development project in which teams of undergraduate sophomores and juniors work with a local non-profit organization on a data-focused problem. To help students develop a sense of agency and improve confidence in their technical and non-technical data science skills, the project promoted a team-based approach to data science, adopting several processes and tools intended to facilitate this collaboration.Evidence from the project evaluation, including participant survey and interview data, is presented to document the degree to which the project was successful in engaging students in team-based data science, and how the project changed the students' perceptions of their technical and non-technical skills. We also examine opportunities for improvement and offer insight to other data science educators who may want to implement a similar team-based approach to data science projects at their own institutions. 
    more » « less
  2. Many Web applications do not meet the precise needs of their users. Browser extensions offer a way to customize web applications, but most people do not have the programming skills to implement their own extensions. In this paper, we present spreadsheet-driven customization, a technique that enables end users to customize software without doing any traditional programming. The idea is to augment an application’s UI with a spreadsheet that is synchronized with the application’s data. When the user manipulates the spreadsheet, the underlying data is modified and the changes are propagated to the UI, and vice versa. We have implemented this technique in a prototype browser extension called Wildcard. Through concrete examples, we demonstrate that Wildcard can support useful customizations—ranging from sorting lists of search results to showing related data from web APIs—on top of existing websites. We also present the design principles underlying our prototype. Customization can lead to dramatically better experiences with software. We think that spreadsheet-driven customization offers a promising new approach to unlocking this benefit for all users, not just programmers. 
    more » « less
  3. There is a growing need for next-generation science gateways to increase the accessibility of data sets and cloud computing resources using latest technologies. Most science gateways today are built for specific purposes with pre-defined workflows, user interfaces, and fixed computing resources. There is a need to modernize them with middleware that can provide ‘plug in’ support to programmatically increase their extensibility and scalability to meet users’ growing needs. In this paper, we propose a novel middleware that can be integrated into science gate ways using a “bring-your-own” plug-in management approach. This approach features microservice architectures to decouple applications, and allows users (i.e., administrators, developers, researchers) to customize and incorporate domain-specific components in an existing science gateway. We detail the application programming interfaces in our middleware for creation of end-to end pipelines with diverse infrastructure, customized processes, detailed monitoring and flexible programmability for a scientific domain. We also demonstrate via a OnTimeRecommend case study on how our “bring-your-own” approach can be seamlessly integrated by a science gateway administrator/developer using a web application. 
    more » « less
  4. This tutorial will introduce our Accessibility Learning Labs (ALL). The objectives of this collaborative project with The National Technical Institute for the Deaf (NTID) are to both inform participants about foundational topics in accessibility and to demonstrate the importance of creating accessible software. The labs enable easy classroom inclusion by providing instructors all necessary materials including lecture and activity slides and videos. Each lab addresses an accessibility issue and contains: I) Relevant background information on the examined issue II) An example web-based application containing the accessibility problem III) A process to emulate this accessibility problem IV) Details about how to repair the problem from a technical perspective V) Incidents from people who encountered this accessibility issue and how it has impacted their life. The labs may be easily integrated into a wide variety of curriculum at high schools (9-12), and in undergraduate and graduate courses. The labs will be easily adoptable due to their selfcontained nature and their inclusion of all necessary instructional material (e.g., slides, quizzes, etc.). No special software is required to use any portion of the labs since they are web-based and are able to run on any computer with a reasonably recent web browser. There are currently four available labs on the topics of: Colorblindness, Hearing, Blindness and Dexterity. Material is available on our website: http://all.rit.edu This tutorial will provide an overview of the created labs and usage instructions and information for adaptors. 
    more » « less
  5. null (Ed.)
    Engineering graduates need a deep understanding of key concepts in addition to technical skills to be successful in the workforce. However, traditional methods of instruction (e.g., lecture) do not foster deep conceptual understanding and make it challenging for students to learn the technical skills, (e.g., professional modeling software), that they need to know. This study builds on prior work to assess engineering students’ conceptual and procedural knowledge. The results provide an insight into how the use of authentic online learning modules influence engineering students’ conceptual knowledge and procedural skills. We designed online active learning modules to support and deepen undergraduate students’ understanding of key concepts in hydrology and water resources engineering (e.g., watershed delineation, rainfall-runoff processes, design storms), as well as their technical skills (e.g., obtaining and interpreting relevant information for a watershed, proficiency using HEC-HMS and HEC-RAS modeling tools). These modules integrated instructional content, real data, and modeling resources to support students’ solving of complex, authentic problems. The purpose of our study was to examine changes in students’ self-reported understanding of concepts and skills after completing these modules. The participants in this study were 32 undergraduate students at a southern U.S. university in a civil engineering senior design course who were assigned four of these active learning modules over the course of one semester to be completed outside of class time. Participants completed the Student Assessment of Learning Gains (SALG) survey immediately before starting the first module (time 1) and after completing the last module (time 2). The SALG is a modifiable survey meant to be specific to the learning tasks that are the focus of instruction. We created versions of the SALG for each module, which asked students to self-report their understanding of concepts and ability to implement skills that are the focus of each module. We calculated learning gains by examining differences in students’ self-reported understanding of concepts and skills from time 1 to time 2. Responses were analyzed using eight paired samples t-tests (two for each module used, concepts and skills). The analyses suggested that students reported gains in both conceptual knowledge and procedural skills. The data also indicated that the students’ self-reported gain in skills was greater than their gain in concepts. This study provides support for enhancing student learning in undergraduate hydrology and water resources engineering courses by connecting conceptual knowledge and procedural skills to complex, real-world problems. 
    more » « less