skip to main content


Title: Traffic signal control in mixed traffic environment based on advance decision and reinforcement learning
Abstract

Reinforcement learning-based traffic signal control systems (RLTSC) can enhance dynamic adaptability, save vehicle travelling time and promote intersection capacity. However, the existing RLTSC methods do not consider the driver's response time requirement, so the systems often face efficiency limitations and implementation difficulties. We propose the advance decision-making reinforcement learning traffic signal control (AD-RLTSC) algorithm to improve traffic efficiency while ensuring safety in mixed traffic environment. First, the relationship between the intersection perception range and the signal control period is established and the trust region state (TRS) is proposed. Then, the scalable state matrix is dynamically adjusted to decide the future signal light status. The decision will be displayed to the human-driven vehicles (HDVs) through the bi-countdown timer mechanism and sent to the nearby connected automated vehicles (CAVs) using the wireless network rather than be executed immediately. HDVs and CAVs optimize the driving speed based on the remaining green (or red) time. Besides, the Double Dueling Deep Q-learning Network algorithm is used for reinforcement learning training; a standardized reward is proposed to enhance the performance of intersection control and prioritized experience replay is adopted to improve sample utilization. The experimental results on vehicle micro-behaviour and traffic macro-efficiency showed that the proposed AD-RLTSC algorithm can simultaneously improve both traffic efficiency and traffic flow stability.

 
more » « less
NSF-PAR ID:
10383109
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Transportation Safety and Environment
Volume:
4
Issue:
4
ISSN:
2631-4428
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Motivated by connected and automated vehicle (CAV) technologies, this paper proposes a data-driven optimization-based Model Predictive Control (MPC) modeling framework for the Cooperative Adaptive Cruise Control (CACC) of a string of CAVs under uncertain traffic conditions. The proposed data-driven optimization-based MPC modeling framework aims to improve the stability, robustness, and safety of longitudinal cooperative automated driving involving a string of CAVs under uncertain traffic conditions using Vehicle-to-Vehicle (V2V) data. Based on an online learning-based driving dynamics prediction model, we predict the uncertain driving states of the vehicles preceding the controlled CAVs. With the predicted driving states of the preceding vehicles, we solve a constrained Finite-Horizon Optimal Control problem to predict the uncertain driving states of the controlled CAVs. To obtain the optimal acceleration or deceleration commands for the CAVs under uncertainties, we formulate a Distributionally Robust Stochastic Optimization (DRSO) model (i.e. a special case of data-driven optimization models under moment bounds) with a Distributionally Robust Chance Constraint (DRCC). The predicted uncertain driving states of the immediately preceding vehicles and the controlled CAVs will be utilized in the safety constraint and the reference driving states of the DRSO-DRCC model. To solve the minimax program of the DRSO-DRCC model, we reformulate the relaxed dual problem as a Semidefinite Program (SDP) of the original DRSO-DRCC model based on the strong duality theory and the Semidefinite Relaxation technique. In addition, we propose two methods for solving the relaxed SDP problem. We use Next Generation Simulation (NGSIM) data to demonstrate the proposed model in numerical experiments. The experimental results and analyses demonstrate that the proposed model can obtain string-stable, robust, and safe longitudinal cooperative automated driving control of CAVs by proper settings, including the driving-dynamics prediction model, prediction horizon lengths, and time headways. Computational analyses are conducted to validate the efficiency of the proposed methods for solving the DRSO-DRCC model for real-time automated driving applications within proper settings. 
    more » « less
  2. Abstract

    Rapid advances in vehicle automation and communication technologies enable connected autonomous vehicles (CAVs) to cross intersections cooperatively, which could significantly improve traffic throughput and safety at intersections. Virtual platooning, designed upon car‐following behavior, is one of the promising control methods to promote cooperative intersection crossing of CAVs. Nevertheless, demand variation raises safety and stability concerns when CAVs adopt a virtual platooning control approach. Along this line, this study proposes an adaptive vehicle control method to facilitate the formation of a virtual platoon and the cooperative crossing of CAVs, factoring demand variations at an isolated intersection. This study derives the stability conditions of virtual CAV platoons depending on the time‐varying traffic demand. Based on the derived stability conditions, an optimization model is proposed to adaptively control CAVs dynamics by balancing approaching traffic mobility and safety to enhance the reliability of cooperative crossing at intersections. The simulation results show that, compared to the nonadaptive control, our proposed method can increase the intersection throughput by 18.2%. Also, time‐to‐collision results highlight the advantages of the proposed adaptive control in securing traffic safety.

     
    more » « less
  3. Connected and automated vehicle (CAV) technology is providing urban transportation managers tremendous opportunities for better operation of urban mobility systems. However, there are significant challenges in real-time implementation as the computational time of the corresponding operations optimization model increases exponentially with increasing vehicle numbers. Following the companion paper (Chen et al. 2021), which proposes a novel automated traffic control scheme for isolated intersections, this study proposes a network-level, real-time traffic control framework for CAVs on grid networks. The proposed framework integrates a rhythmic control method with an online routing algorithm to realize collision-free control of all CAVs on a network and achieve superior performance in average vehicle delay, network traffic throughput, and computational scalability. Specifically, we construct a preset network rhythm that all CAVs can follow to move on the network and avoid collisions at all intersections. Based on the network rhythm, we then formulate online routing for the CAVs as a mixed integer linear program, which optimizes the entry times of CAVs at all entrances of the network and their time–space routings in real time. We provide a sufficient condition that the linear programming relaxation of the online routing model yields an optimal integer solution. Extensive numerical tests are conducted to show the performance of the proposed operations management framework under various scenarios. It is illustrated that the framework is capable of achieving negligible delays and increased network throughput. Furthermore, the computational time results are also promising. The CPU time for solving a collision-free control optimization problem with 2,000 vehicles is only 0.3 second on an ordinary personal computer. 
    more » « less
  4. In this paper, we showcase a framework for cooperative mixed traffic platooning that allows the platooning vehicles to realize multiple benefits from using vehicle-to- everything (V2X) communications and advanced controls on urban arterial roads. A mixed traffic platoon, in general, can be formulated by a lead and ego connected automated vehicles (CAVs) with one or more unconnected human-driven vehicles (UHVs) in between. As this platoon approaches an intersection, the lead vehicle uses signal phase and timing (SPaT) messages from the connected intersection to optimize its trajectory for travel time and energy efficiency as it passes through the intersection. These benefits carry over to the UHVs and the ego vehicle as they follow the lead vehicle. The ego vehicle then uses information from the lead vehicle received through basic safety messages (BSMs) to further optimize its safety, driving comfort, and energy consumption. This is accomplished by the recently designed cooperative adaptive cruise control with unconnected vehicles (CACCu). The performance benefits of our framework are proven and demonstrated by simulations using real-world platooning data from the CACC Field Operation Test (FOT) Dataset from the Netherlands. 
    more » « less
  5. Cooperative adaptive cruise control (CACC) is one of the popular connected and automated vehicle (CAV) applications for cooperative driving automation with combined connectivity and automation technologies to improve string stability. This study aimed to derive the string stability conditions of a CACC controller and analyze the impacts of CACC on string stability for both a fleet of homogeneous CAVs and for heterogeneous traffic with human-driven vehicles (HDVs), connected vehicles (CVs) with connectivity technologies only, and autonomous vehicles (AVs) with automation technologies only. We mathematically analyzed the impact of CACC on string stability for both homogeneous and heterogeneous traffic flow. We adopted parameters from literature for HDVs, CVs, and AVs for the heterogeneous traffic case. We found there was a minimum constant time headway required for each parameter design to ensure stability in homogeneous CACC traffic. In addition, the constant time headway and the length of control time interval had positive correlation with stability, but the control parameter had a negative correlation with stability. The numerical analysis also showed that CACC vehicles could maintain string stability better than CVs and AVs under low HDV market penetration rates for the mixed traffic case. 
    more » « less