skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantitative prediction and measurement of Piezo's membrane footprint
Piezo proteins are mechanosensitive ion channels that can locally curve the membrane into a dome shape [Y. R. Guo, R. MacKinnon, eLife 6, e33660 (2017)]. The curved shape of the Piezo dome is expected to deform the surrounding lipid bilayer membrane into a membrane footprint, which may serve to amplify Piezo’s sensitivity to applied forces [C. A. Haselwandter, R. MacKinnon, eLife 7, e41968 (2018)]. If Piezo proteins are embedded in lipid bilayer vesicles, the membrane shape deformations induced by the Piezo dome depend on the vesicle size. We employ here membrane elasticity theory to predict, with no free parameters, the shape of such Piezo vesicles outside the Piezo dome, and show that the predicted vesicle shapes agree quantitatively with the corresponding measured vesicle shapes obtained through cryoelectron tomography, for a range of vesicle sizes [W. Helfrich, Z. Naturforsch. C 28, 693–703 (1973)]. On this basis, we explore the coupling between Piezo and membrane shape and demonstrate that the features of the Piezo dome affecting Piezo’s membrane footprint approximately follow a spherical cap geometry. Our work puts into place the foundation for deducing key elastic properties of the Piezo dome from membrane shape measurements and provides a general framework for quantifying how proteins deform bilayer membranes.  more » « less
Award ID(s):
2051681 1554716
PAR ID:
10383147
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
40
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We show in the companion paper that the free membrane shape of lipid bilayer vesicles containing the mechanosensitive ion channel Piezo can be predicted, with no free parameters, from membrane elasticity theory together with measurements of the protein geometry and vesicle size [C. A. Haselwandter, Y. R. Guo, Z. Fu, R. MacKinnon, Proc. Natl. Acad. Sci. U.S.A. , 10.1073/pnas.2208027119 (2022)]. Here we use these results to determine the force that the Piezo dome exerts on the free membrane and hence, that the free membrane exerts on the Piezo dome, for a range of vesicle sizes. From vesicle shape measurements alone, we thus obtain a force–distortion relationship for the Piezo dome, from which we deduce the Piezo dome’s intrinsic radius of curvature, 42 ± 12 nm, and bending stiffness, 18 ± 2.1   k B T , in freestanding lipid bilayer membranes mimicking cell membranes. Applying these estimates to a spherical cap model of Piezo embedded in a lipid bilayer, we suggest that Piezo’s intrinsic curvature, surrounding membrane footprint, small stiffness, and large area are the key properties of Piezo that give rise to low-threshold, high-sensitivity mechanical gating. 
    more » « less
  2. The hydrophobic effect of alkyl group insertion into phospholipid bilayers is exploited in modifying and modulating vesicle structure. We show that amphiphilic polypeptoids (peptide mimics) with n-decyl side chains, which we term as hydrophobe-containing polypeptoids (HCPs), can insert the alkyl hydrophobes into the membrane bilayer of phospholipid-based vesicles. Such insertion leads to disruption of the liposomes and the formation of HCP–lipid complexes that are colloidally stable in aqueous solution. Interestingly, when these complexes are added to fresh liposomes, remnant uncomplexed hydrophobes (the n-decyl groups) bridge liposomes and fuse them. The fusion leads to the engulfing of liposomes and the formation of multilayered vesicles. The morphology of the liposome system can be changed from stopping fusion and forming clustered vesicles to the continued formation of multilayered liposomes simply by controlling the amount of the HCP–lipid complex added. The entire procedure occurs in aqueous systems without the addition of any other solvents. There are several implications to these observations including the biological relevance of mimicking fusogenic proteins such as the SNARE proteins and the development of new drug delivery technologies to impact delivery to cell organelles. 
    more » « less
  3. The cell plasma membrane is a two-dimensional, fluid mosaic material composed of lipids and proteins that create a semipermeable barrier defining the cell from its environment. Compared with soluble proteins, the methodologies for the structural and functional characterization of membrane proteins are challenging. An emerging tool for studies of membrane proteins in mammalian systems is a “plasma membrane on a chip,” also known as a supported lipid bilayer. Here, we create the “plant-membrane-on-a-chip,″ a supported bilayer made from the plant plasma membranes of Arabidopsis thaliana, Nicotiana benthamiana, or Zea mays. Membrane vesicles from protoplasts containing transgenic membrane proteins and their native lipids were incorporated into supported membranes in a defined orientation. Membrane vesicles fuse and orient systematically, where the cytoplasmic side of the membrane proteins faces the chip surface and constituents maintain mobility within the membrane plane. We use plant-membrane-on-a-chip to perform fluorescent imaging to examine protein–protein interactions and determine the protein subunit stoichiometry of FLOTILLINs. We report here that like the mammalian FLOTILLINs, FLOTILLINs expressed in Arabidopsis form a tetrameric complex in the plasma membrane. This plant-membrane-on-a-chip approach opens avenues to studies of membrane properties of plants, transport phenomena, biophysical processes, and protein–protein and protein–lipid interactions in a convenient, cell-free platform. 
    more » « less
  4. null (Ed.)
    Building upon our previous studies on interactions of amphiphilic Janus nanoparticles with glass-supported lipid bilayers, we study here how these Janus nanoparticles perturb the structural integrity and induce shape instabilities of membranes of giant unilamellar vesicles (GUVs). We show that 100 nm amphiphilic Janus nanoparticles disrupt GUV membranes at a threshold particle concentration similar to that in supported lipid bilayers, but cause drastically different membrane deformations, including membrane wrinkling, protrusion, poration, and even collapse of entire vesicles. By combining experiments with molecular simulations, we reveal how Janus nanoparticles alter local membrane curvature and collectively compress the membrane to induce shape transformation of vesicles. Our study demonstrates that amphiphilic Janus nanoparticles disrupt vesicle membranes differently and more effectively than uniform amphiphilic particles. 
    more » « less
  5. The structure and dynamics of lipid membranes in the presence of extracellular macromolecules are critical for cell membrane functions and many pharmaceutical applications. The pathogen virulence-suppressing end-phosphorylated polyethylene glycol (PEG) triblock copolymer ( Pi-ABAPEG ) markedly changes the interactions with lipid vesicle membranes and prevents PEG-induced vesicle phase separation in contrast to the unphosphorylated copolymer ( ABAPEG ). Pi-ABAPEG weakly absorbs on the surface of lipid vesicle membranes and slightly changes the structure of 1,2-dimyristoyl- sn-glycero -3-phosphocholine ( DMPC ) unilamellar vesicles at 37 °C, as evidenced by small angle neutron scattering. X-ray reflectivity measurements confirm the weak adsorption of Pi-ABAPEG on DMPC monolayer, resulting in a more compact DMPC monolayer structure. Neutron spin-echo results show that the adsorption of Pi-ABAPEG on DMPC vesicle membranes increases the membrane bending modulus κ . 
    more » « less