Abstract Post-merger galaxies are unique laboratories to study the triggering and interplay of star formation and active galactic nucleus (AGN) activity. Combining new, high-resolution Jansky Very Large Array (VLA) observations with archival radio surveys, we have examined the radio properties of 28 spheroidal post-merger galaxies. We detect 18 radio sources in our post-merger sample and find a general lack of extended emission at (sub)kiloparsec scales, indicating the prevalence of compact, nuclear radio emission in these post-merger galaxies, with the majority (16/18; 89%) characterized as low luminosity. Using multiwavelength data, we determine the origin of the radio emission, discovering 15 new radio AGNs and three radio sources likely associated with star-forming (SF) processes. Among the radio AGNs, almost all are low luminosity (13/15; 87%), inconsistent with a relativistic jet origin. We discover a new dual AGN (DAGN) candidate, J1511+0417, and investigate the radio properties of the DAGN candidate J0843+3549. Five of these radio AGNs are hosted by a SF or SF-AGN composite emission-line galaxy, suggesting that radio AGN activity may be present during periods of SF activity in post-mergers. The low-power jets and compact morphologies of these radio AGNs also point to a scenario in which AGN feedback may be efficient in this sample of post-mergers. Lastly, we present simulated, multifrequency observations of the 15 radio AGNs with the Very Long Baseline Array and the very-long-baseline interferometry capabilities of the Next-Generation VLA to assess the feasibility of these instruments in searches for supermassive black hole binaries.
more »
« less
Probing Multiphase Gas in Local Massive Elliptical Galaxies via Multiwavelength Observations
Abstract We investigate the cold and warm gas content, kinematics, and spatial distribution of six local massive elliptical galaxies to probe the origin of the multiphase gas in their atmospheres. We report new observations, including Stratospheric Observatory for Infrared Astronomy [C ii ], Atacama Large Millimeter/submillimeter Array CO, Multi Unit Spectroscopic Explorer (MUSE) H α +[N ii ], and Very Large Array (VLA) radio observations. These are complemented by a large suite of multiwavelength archival data sets, including thermodynamical properties of the hot gas and radio jets, which are leveraged to investigate the role of active galactic nucleus (AGN) feeding/feedback in regulating the multiphase gas content. Our galactic sample shows a significant diversity in cool gas content, spanning filamentary and rotating structures. In our noncentral galaxies, the distribution of such gas is often concentrated, at variance with the more extended features observed in central galaxies. Misalignment between the multiphase gas and stars suggest that stellar mass loss is not the primary driver. A fraction of the cool gas might be acquired via galaxy interactions, but we do not find quantitative evidence of mergers in most of our systems. Instead, key evidence supports the origin via condensation out of the diffuse halo. Comparing with chaotic cold accretion (CCA) simulations, we find that our cool gas-free galaxies are likely in the overheated phase of the self-regulated AGN cycle, while for our galaxies with cool gas, the k-plot and AGN power correlation corroborate the phase of CCA feeding in which the condensation rain is triggering more vigorous AGN heating. The related C-ratio further shows that central/noncentral galaxies are expected to generate an extended/inner rain, consistent with our sample.
more »
« less
- Award ID(s):
- 1714764
- PAR ID:
- 10383310
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 928
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 150
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)ABSTRACT Active galactic nuclei (AGNs) feedback is responsible for maintaining plasma in global thermal balance in extended haloes of elliptical galaxies and galaxy clusters. Local thermal instability in the hot gas leads to the formation of precipitating cold gas clouds that feed the central supermassive black holes, thus heating the hot gas and maintaining global thermal equilibrium. We perform 3D magnetohydrodynamical (MHD) simulations of self-regulated AGNs feedback in a Perseus-like galaxy cluster with the aim of understanding the impact of the feedback physics on the turbulence properties of the hot and cold phases of the intracluster medium (ICM). We find that, in general, the cold phase velocity structure function (VSF) is steeper than the prediction from Kolmogorov’s theory. We attribute the physical origin of the steeper slope of the cold phase VSF to the driving of turbulent motions primarily by the gravitational acceleration acting on the ballistic clouds. We demonstrate that, in the pure hydrodynamical case, the precipitating cold filaments may be the dominant agent driving turbulence in the hot ICM. The arguments in favour of this hypothesis are that: (i) the cold phase mass dominates over hot gas mass in the inner cool core; (ii) hot and cold gas velocities are spatially correlated; (iii) both the cold and hot phase velocity distributions are radially biased. We show that, in the MHD case, the turbulence in the ambient hot medium (excluding the jet cone regions) can also be driven by the AGN jets. The driving is then facilitated by enhanced coupling due to magnetic fields of the ambient gas and the AGN jets. In the MHD case, turbulence may thus be driven by a combination of AGN jet stirring and filament motions. We conclude that future observations, including those from high spatial and spectral resolution X-ray missions, may help to constrain self-regulated AGN feedback by quantifying the multitemperature VSF in the ICM.more » « less
-
Abstract We present the results of an analysis of Wide-field Infrared Survey Explorer (WISE) observations of the full 2500 deg 2 South Pole Telescope (SPT)-Sunyaev–Zel’dovich cluster sample. We describe a process for identifying active galactic nuclei (AGN) in brightest cluster galaxies (BCGs) based on WISE mid-IR color and redshift. Applying this technique to the BCGs of the SPT-SZ sample, we calculate the AGN-hosting BCG fraction, which is defined as the fraction of BCGs hosting bright central AGNs over all possible BCGs. Assuming an evolving single-burst stellar population model, we find statistically significant evidence (>99.9%) for a mid-IR excess at high redshift compared to low redshift, suggesting that the fraction of AGN-hosting BCGs increases with redshift over the range of 0 < z < 1.3. The best-fit redshift trend of the AGN-hosting BCG fraction has the form (1 + z ) 4.1±1.0 . These results are consistent with previous studies in galaxy clusters as well as as in field galaxies. One way to explain this result is that member galaxies at high redshift tend to have more cold gas. While BCGs in nearby galaxy clusters grow mostly by dry mergers with cluster members, leading to no increase in AGN activity, BCGs at high redshift could primarily merge with gas-rich satellites, providing fuel for feeding AGNs. If this observed increase in AGN activity is linked to gas-rich mergers rather than ICM cooling, we would expect to see an increase in scatter in the P cav versus L cool relation at z > 1. Last, this work confirms that the runaway cooling phase, as predicted by the classical cooling-flow model, in the Phoenix cluster is extremely rare and most BCGs have low (relative to Eddington) black hole accretion rates.more » « less
-
Multi-phase filamentary structures around brightest cluster galaxies (BCG) are likely a key step of AGN-feedback. We observed molecular gas in three cool cluster cores, namely Centaurus, Abell S1101, and RXJ1539.5, and gathered ALMA (Atacama Large Millimeter/submillimeter Array) and MUSE (Multi Unit Spectroscopic Explorer) data for 12 other clusters. Those observations show clumpy, massive, and long (3−25 kpc) molecular filaments, preferentially located around the radio bubbles inflated by the AGN. Two objects show nuclear molecular disks. The optical nebula is certainly tracing the warm envelopes of cold molecular filaments. Surprisingly, the radial profile of the H α /CO flux ratio is roughly constant for most of the objects, suggesting that (i) between 1.2 and 6 times more cold gas could be present and (ii) local processes must be responsible for the excitation. Projected velocities are between 100 and 400 km s −1 , with disturbed kinematics and sometimes coherent gradients. This is likely due to the mixing in projection of several thin (and as yet) unresolved filaments. The velocity fields may be stirred by turbulence induced by bubbles, jets, or merger-induced sloshing. Velocity and dispersions are low, below the escape velocity. Cold clouds should eventually fall back and fuel the AGN. We compare the radial extent of the filaments, r fil , with the region where the X-ray gas can become thermally unstable. The filaments are always inside the low-entropy and short-cooling-time region, where t cool / t ff < 20 (9 of 13 sources). The range of t cool / t ff of 8−23 at r fil , is likely due to (i) a more complex gravitational potential affecting the free-fall time t ff (sloshing, mergers, etc.) and (ii) the presence of inhomogeneities or uplifted gas in the ICM, affecting the cooling time t cool . For some of the sources, r fil lies where the ratio of the cooling time to the eddy-turnover time, t cool / t eddy , is approximately unity.more » « less
-
We present a kinematic analysis based on the large integral field spectroscopy (IFS) dataset of SDSS-IV MaNGA (Sloan Digital Sky Survey/Mapping Nearby Galaxies at Apache Point Observatory; ∼10 000 galaxies). We have compiled a diverse sample of 594 unique active galactic nuclei (AGNs), identified through a variety of independent selection techniques, encompassing radio (1.4 GHz) observations, optical emission-line diagnostics (BPT), broad Balmer emission lines, mid-infrared colors, and hard X-ray emission. We investigated how ionized gas kinematics behave in these different AGN populations through stacked radial profiles of the [O III] 5007 emission-line width across each AGN population. We contrasted AGN populations against each other (and non-AGN galaxies) by matching samples by stellar mass, [O III] 5007 luminosity, morphology, and redshift. We find similar kinematics between AGNs selected by BPT diagnostics compared to broad-line-selected AGNs. We also identify a population of non-AGNs with similar radial profiles as AGNs, indicative of the presence of remnant outflows (or fossil outflows) of past AGN activity. We find that purely radio-selected AGNs display enhanced ionized gas line widths across all radii. This suggests that our radio-selection technique is sensitive to a population in which AGN-driven kinematic perturbations have been active for longer durations (potentially due to recurrent activity) than in purely optically selected AGNs. This connection between radio activity and extended ionized gas outflow signatures is consistent with recent evidence that suggests radio emission (expected to be diffuse) originated due to shocks from outflows. We conclude that different selection techniques can trace different AGN populations not only in terms of energetics but also in terms of AGN evolutionary stages. Our results are important in the context of the AGN duty cycle and highlight integral field unit data’s potential to deepen our knowledge of AGNs and galaxy evolution.more » « less
An official website of the United States government

