skip to main content


Title: A high-throughput multispectral imaging system for museum specimens
Abstract

We present an economical imaging system with integrated hardware and software to capture multispectral images of Lepidoptera with high efficiency. This method facilitates the comparison of colors and shapes among species at fine and broad taxonomic scales and may be adapted for other insect orders with greater three-dimensionality. Our system can image both the dorsal and ventral sides of pinned specimens. Together with our processing pipeline, the descriptive data can be used to systematically investigate multispectral colors and shapes based on full-wing reconstruction and a universally applicable ground plan that objectively quantifies wing patterns for species with different wing shapes (including tails) and venation systems. Basic morphological measurements, such as body length, thorax width, and antenna size are automatically generated. This system can increase exponentially the amount and quality of trait data extracted from museum specimens.

 
more » « less
NSF-PAR ID:
10383374
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Biology
Volume:
5
Issue:
1
ISSN:
2399-3642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Butterflies and moths (Lepidoptera) comprise significant portions of the world’s natural history collections, but a standardized tissue preservation protocol for molecular research is largely lacking. Lepidoptera have traditionally been spread on mounting boards to display wing patterns and colors, which are often important for species identification. Many molecular phylogenetic studies have used legs from pinned specimens as the primary source for DNA in order to preserve a morphological voucher, but the amount of available tissue is often limited. Preserving an entire specimen in a cryogenic freezer is ideal for DNA preservation, but without an easily accessible voucher it can make specimen identification, verification, and morphological work difficult. Here we present a procedure that creates accessible and easily visualized “wing vouchers” of individual Lepidoptera specimens, and preserves the remainder of the insect in a cryogenic freezer for molecular research. Wings are preserved in protective holders so that both dorsal and ventral patterns and colors can be easily viewed without further damage. Our wing vouchering system has been implemented at the University of Maryland (AToL Lep Collection) and the University of Florida (Florida Museum of Natural History, McGuire Center of Lepidoptera and Biodiversity), which are among two of the largest Lepidoptera molecular collections in the world.

     
    more » « less
  2. Analyzing color and pattern in the context of motion is a central and ongoing challenge in the quantification of animal coloration. Many animal signals are spatially and temporally variable, but traditional methods fail to capture this dynamism because they use stationary animals in fixed positions. To investigate dynamic visual displays and to understand the evolutionary forces that shape dynamic colorful signals, we require cross-disciplinary methods that combine measurements of color, pattern, 3-dimensional (3D) shape, and motion. Here, we outline a workflow for producing digital 3D models with objective color information from museum specimens with diffuse colors. The workflow combines multispectral imaging with photogrammetry to produce digital 3D models that contain calibrated ultraviolet (UV) and human-visible (VIS) color information and incorporate pattern and 3D shape. These “3D multispectral models” can subsequently be animated to incorporate both signaler and receiver movement and analyzed in silico using a variety of receiver-specific visual models. This approach—which can be flexibly integrated with other tools and methods—represents a key first step toward analyzing visual signals in motion. We describe several timely applications of this workflow and next steps for multispectral 3D photogrammetry and animation techniques. 
    more » « less
  3. Abstract

    Phenotypic divergence is an important consequence of restricted gene flow in insular populations. This divergence can be challenging to detect when it occurs through subtle shifts in morphological traits, particularly in traits with complex geometries, like insect wing venation. Here, we employed geometric morphometrics to assess the extent of variation in wing venation patterns across reproductively isolated populations of the social sweat bee,Halictus tripartitus. We examined wing morphology of specimens sampled from a reproductively isolated population ofH. tripartituson Santa Cruz Island (Channel Islands, Southern California). Our analysis revealed significant differentiation in wing venation in this island population relative to conspecific mainland populations. We additionally found that this population‐level variation was less pronounced than the species‐level variation in wing venation among three sympatric congeners native to the region,Halictus tripartitus,Halictus ligatus, andHalictus farinosus. Together, these results provide evidence for subtle phenotypic divergence in an island bee population. More broadly, these results emphasize the utility and potential of wing morphometrics for large‐scale assessment of insect population structure.

     
    more » « less
  4. Abstract

    Parasite dispersal can shape host–parasite interactions at both deep and shallow timescales. One approach to understanding the effects of dispersal is to study parasite lineages that differ in dispersal capability but are from the same group of hosts. In this study, we compared phylogenetic and population genetic patterns of wing and body lice from ground‐doves. Wing lice are more capable of dispersal than body lice. We sequenced full genomes of individual lice for multiple representatives of several wing and body louse species. From these data, we assembled genes for phylogenetic analysis and called SNPs for population genetic analysis. At the phylogenetic level, body lice showed more codivergence with their hosts than did wing lice. However, both wing and body lice exhibited some phylogenetic congruence with their hosts. Within species, body lice showed more population genetic structure than wing lice, although both types of lice showed some structure according to biogeography. Body lice also had significantly lower heterozygosity than wing lice, suggesting more inbreeding. Our results demonstrate that dispersal can shape a host–parasite system across evolutionary time, but also that other factors (e.g., host association and biogeography) can have varying degrees of influence on different groups of parasites and at different evolutionary scales.

     
    more » « less
  5. Abstract Community science, which engages students and the public in data collection and scientific inquiry, is often integrated into conservation and long-term monitoring efforts. However, it has the potential to also introduce the public to, and be useful for, sensory ecology and other fields of study. Here we describe a community science project that exposes participants to animal behavior and sensory ecology using the rich butterfly community of Northwest Arkansas, United States. Butterflies use visual signals to communicate and to attract mates. Brighter colors can produce stronger signals for mate attraction but can also unintentionally attract negative attention from predators. Environmental conditions such as weather can affect visual signaling as well, by influencing the wavelengths of light available and subsequent signal detection. However, we do not know whether the signals butterflies present correlate broadly with how they behave. In this study, we collaborated with hundreds of students and community members at the University of Arkansas (UARK) and the Botanical Gardens of the Ozarks (BGO) for over 3.5 years to examine relationships among wing pattern, weather, time of day, behavior, and flower choice. We found that both weather and wing color influenced general butterfly behavior. Butterflies were seen feeding more on cloudy days than on sunny or partly cloudy days. Brown butterflies fed or sat more often, while white butterflies flew more often relative to other butterfly colors. We also found that there was an interaction between the effects of weather and wing color on butterfly behavior. Furthermore, butterfly color predicted the choice of flower colors that butterflies visited, though this effect was influenced by the observer group (UARK student or BGO participant). These results suggest that flower choice may be associated with butterfly wing pattern, and that different environmental conditions may influence butterfly behavior in wing-pattern–specific ways. They also illustrate one way that public involvement in behavioral studies can facilitate the identification of coarse-scale, community-wide behavioral patterns, and lay the groundwork for future studies of sensory niches. 
    more » « less