skip to main content

Title: “GPA Patterns of Black Mechanical Engineering Students.”
In recent years, research has associated grade point average (GPA) with a variety of student outcomes during their undergraduate careers. The studies link higher GPAs to students being more likely to graduate in their major, while lower GPAs have been linked to students switching majors or leaving the institution. Further research, which focuses on how Black female and male students remain successful in different engineering degrees, is necessary to identify the underlying elements contributing to their entrance into and exit from engineering disciplines. This quantitative examination of trends among the GPAs of Black women and men is part of a larger NSF-funded mixed-methods study that includes in-depth student interviews of Black students who persisted in and switched from ME. In this quantitative paper, we examine the GPA patterns of Black students in Mechanical Engineering (ME). Students who have ever enrolled in ME have four potential, mutually exclusive, outcomes: 1) they can persist for 12 semesters without graduating; 2) they can graduate in ME within 12 semesters; 3) they can switch to another major; or 4) they can leave school. In this research, we identify the most common GPA patterns associated with graduated ME students. We hypothesize a relationship between distinct GPA more » patterns and whether a student persists in ME, graduates in ME, switches away from ME, or leaves the institution altogether. This quantitative investigation uses the Multiple-Institution Database for Investigating Engineering Longitudinal Development (MIDFIELD) to collect the cumulative GPA of ME students at each term. We use a functional cluster analysis approach to group similar patterns. First, a function is fit to each student record. Then a cluster analysis is conducted on the function parameters to identify natural groupings in the data. Once students are grouped according to their GPA profile, we examine the other characteristics and outcomes of the group. We present a visual quantitative analysis of the patterns in the GPAs of Black women and men who enroll in ME. Clustering analysis suggests that first-time-in-college (FTIC) Black female students in ME who graduated have a higher proportion of students in the higher GPA clusters than the proportion of FTIC Black male students who graduated in ME. A higher proportion of the male student population is clustered in the lower GPA cluster groups as compared to women in the lower GPA cluster groups. A higher proportion of students who graduated are in the higher GPA clusters than the proportion of graduated students in the lower GPA clusters. « less
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Proceedings of the 2022 Annual Conference of the American Society for Engineering Education.
Sponsoring Org:
National Science Foundation
More Like this
  1. Our transformative mixed-methods project, funded by the Division of Engineering Education and Centers, responds to calls for more cross-institutional qualitative and longitudinal studies of minorities in engineering education. Our project builds on prior work that demonstrated the impacts of gender and race on academic trajectories in Electrical, Computer, and Mechanical Engineering (EE, CpE, and ME, respectively) to answer the following questions: 1. Why do Black men and women choose and persist in, or leave, EE, CpE, and ME? 2. What are the academic trajectories of Black men and women in EE, CpE, and ME? 3. In what ways do these pathways vary by gender or institution? 4. What institutional policies and practices promote greater retention of Black engineering students? In Year 4 of our project, the research team has engaged in deeper analysis of our quantitative data from the Multi-Institution Database for Investigating Engineering Longitudinal Development (MIDFIELD) database and our qualitative data from 79 in-depth interviews of students in the three study majors at our four study institutions. Expanding on findings presented in prior years, in this paper, we describe emergent results from three papers from Year 4 of our project: • Paper # 1: “Who Tells Your Story? Qualitativemore »Methods for Establishing Connections and Eliciting Narratives” was published in the International Journal of Qualitative Methodology in 2021. It includes a description of the development of the card-sorting activity that students completed to describe their reasons for choosing to major in engineering and an exploration of different ways to analyze the data. Analysis of how frequently the factors influencing the major choice were chosen by interviewees has allowed us to identify those factors that carry the greatest importance for students and how they vary for persisters and switchers. • Paper # 2: “GPA Trends of Black Mechanical Engineering Students”: Our early qualitative work has led to questions about students who switch majors and those who leave the university. We are using the MIDFIELD database to better understand characteristics of students who switch majors and who leave the university. We will use functional cluster analysis to group the GPA trends to find clearly defined groups of students' GPA. Preliminary findings suggest that the students who switch majors have different GPA trends than the students who leave their institutions. This holds true for whether the student chooses to switch their major and stay within engineering and students who choose to leave engineering. • Paper # 3: “Pride and Prestige: Factors Influencing How and Why Black Students Choose to Attend a Predominantly White Institution or a Historically Black University”: In this paper, we explore the reasons that students in our study majors decided to attend either a HBCU or a PWI. Our early analysis revealed that students had diverse reasons for college choice, including affordability, location, familiarity with the institution, family encouragement and connections, and prestige of the university. Our paper will also describe the differences between students who attended a HBCU or PWI in their rationale for deciding to attend a particular university.« less
  2. Abstract We present a visual, quantitative analysis of the academic pathways of Black men and women who enroll in Electrical Engineering (EE) or Mechanical Engineering (ME) at any point during their undergraduate experience (N=4816). Our research provides evidence that more Black students choose EE than ME, in contrast to national data for all races that show that more students major in ME than EE. While more Black students initially enroll in EE overall, ME attracts a larger proportion of its Black students from other majors and retains a larger fraction. Black women are particularly persistent in ME (58%). Most Black students who leave EE or ME leave the institution without a degree. Seventy-eight percent of Black men and 65% of Black women who leave ME leave the institution without a degree. Of those leaving EE, 74% of Black men and 64% of Black women leave the institution without a degree. This examination of quantitative differences between disciplines lays a foundation for qualitative study through in depth student interviews of Black students in these majors.
  3. Introduction and Theoretical Frameworks Our study draws upon several theoretical foundations to investigate and explain the educational experiences of Black students majoring in ME, CpE, and EE: intersectionality, critical race theory, and community cultural wealth theory. Intersectionality explains how gender operates together with race, not independently, to produce multiple, overlapping forms of discrimination and social inequality (Crenshaw, 1989; Collins, 2013). Critical race theory recognizes the unique experiences of marginalized groups and strives to identify the micro- and macro-institutional sources of discrimination and prejudice (Delgado & Stefancic, 2001). Community cultural wealth integrates an asset-based perspective to our analysis of engineering education to assist in the identification of factors that contribute to the success of engineering students (Yosso, 2005). These three theoretical frameworks are buttressed by our use of Racial Identity Theory, which expands understanding about the significance and meaning associated with students’ sense of group membership. Sellers and colleagues (1997) introduced the Multidimensional Model of Racial Identity (MMRI), in which they indicated that racial identity refers to the “significance and meaning that African Americans place on race in defining themselves” (p. 19). The development of this model was based on the reality that individuals vary greatly in the extent to whichmore »they attach meaning to being a member of the Black racial group. Sellers et al. (1997) posited that there are four components of racial identity: 1. Racial salience: “the extent to which one’s race is a relevant part of one’s self-concept at a particular moment or in a particular situation” (p. 24). 2. Racial centrality: “the extent to which a person normatively defines himself or herself with regard to race” (p. 25). 3. Racial regard: “a person’s affective or evaluative judgment of his or her race in terms of positive-negative valence” (p. 26). This element consists of public regard and private regard. 4. Racial ideology: “composed of the individual’s beliefs, opinions and attitudes with respect to the way he or she feels that the members of the race should act” (p. 27). The resulting 56-item inventory, the Multidimensional Inventory of Black Identity (MIBI), provides a robust measure of Black identity that can be used across multiple contexts. Research Questions Our 3-year, mixed-method study of Black students in computer (CpE), electrical (EE) and mechanical engineering (ME) aims to identify institutional policies and practices that contribute to the retention and attrition of Black students in electrical, computer, and mechanical engineering. Our four study institutions include historically Black institutions as well as predominantly white institutions, all of which are in the top 15 nationally in the number of Black engineering graduates. We are using a transformative mixed-methods design to answer the following overarching research questions: 1. Why do Black men and women choose and persist in, or leave, EE, CpE, and ME? 2. What are the academic trajectories of Black men and women in EE, CpE, and ME? 3. In what way do these pathways vary by gender or institution? 4. What institutional policies and practices promote greater retention of Black engineering students? Methods This study of Black students in CpE, EE, and ME reports initial results from in-depth interviews at one HBCU and one PWI. We asked students about a variety of topics, including their sense of belonging on campus and in the major, experiences with discrimination, the impact of race on their experiences, and experiences with microaggressions. For this paper, we draw on two methodological approaches that allowed us to move beyond a traditional, linear approach to in-depth interviews, allowing for more diverse experiences and narratives to emerge. First, we used an identity circle to gain a better understanding of the relative importance to the participants of racial identity, as compared to other identities. The identity circle is a series of three concentric circles, surrounding an “inner core” representing one’s “core self.” Participants were asked to place various identities from a provided list that included demographic, family-related, and school-related identities on the identity circle to reflect the relative importance of the different identities to participants’ current engineering education experiences. Second, participants were asked to complete an 8-item survey which measured the “centrality” of racial identity as defined by Sellers et al. (1997). Following Enders’ (2018) reflection on the MMRI and Nigrescence Theory, we chose to use the measure of racial centrality as it is generally more stable across situations and best “describes the place race holds in the hierarchy of identities an individual possesses and answers the question ‘How important is race to me in my life?’” (p. 518). Participants completed the MIBI items at the end of the interview to allow us to learn more about the participants’ identification with their racial group, to avoid biasing their responses to the Identity Circle, and to avoid potentially creating a stereotype threat at the beginning of the interview. This paper focuses on the results of the MIBI survey and the identity circles to investigate whether these measures were correlated. Recognizing that Blackness (race) is not monolithic, we were interested in knowing the extent to which the participants considered their Black identity as central to their engineering education experiences. Combined with discussion about the identity circles, this approach allowed us to learn more about how other elements of identity may shape the participants’ educational experiences and outcomes and revealed possible differences in how participants may enact various points of their identity. Findings For this paper, we focus on the results for five HBCU students and 27 PWI students who completed the MIBI and identity circle. The overall MIBI average for HBCU students was 43 (out of a possible 56) and the overall MIBI scores ranged from 36-51; the overall MIBI average for the PWI students was 40; the overall MIBI scores for the PWI students ranged from 24-51. Twenty-one students placed race in the inner circle, indicating that race was central to their identity. Five placed race on the second, middle circle; three placed race on the third, outer circle. Three students did not place race on their identity circle. For our cross-case qualitative analysis, we will choose cases across the two institutions that represent low, medium and high MIBI scores and different ranges of centrality of race to identity, as expressed in the identity circles. Our final analysis will include descriptive quotes from these in-depth interviews to further elucidate the significance of race to the participants’ identities and engineering education experiences. The results will provide context for our larger study of a total of 60 Black students in engineering at our four study institutions. Theoretically, our study represents a new application of Racial Identity Theory and will provide a unique opportunity to apply the theories of intersectionality, critical race theory, and community cultural wealth theory. Methodologically, our findings provide insights into the utility of combining our two qualitative research tools, the MIBI centrality scale and the identity circle, to better understand the influence of race on the education experiences of Black students in engineering.« less
  4. Our transformative mixed-methods project, funded by the Division of Engineering Education and Centers, responds to calls for more cross-institutional qualitative and longitudinal studies of minorities in engineering education. We seek to identify the factors that promote persistence and graduation as well as attrition for Black students in Electrical Engineering (EE), Computer Engineering (CpE), and Mechanical Engineering (ME). Our work combines quantitative exploration and qualitative interviews to better understand the nuanced and complex nature of retention and attrition in these fields. We are investigating the following overarching research questions: 1. Why do Black men and women choose and persist in, or leave, EE, CpE, and ME? 2. What are the academic trajectories of Black men and women in EE, CpE, and ME? 3. In what ways do these pathways vary by gender or institution? 4. What institutional policies and practices promote greater retention of Black engineering students? In this paper, we report on the results from 79 in-depth interviews with students at Predominantly White Institutions (PWIs) and a Historically Black University (HBCU [or HBU]). We describe emergent findings during Year 3 of our project, with a focus on four papers-in-progress: • Paper # 1: Our project utilized several innovative strategies formore »collecting narratives from our 79 interviewees. In particular, we developed a card-sorting activity to learn more about students’ reasons for choosing their engineering major. We have explored a variety of ways to analyze the data that illustrate the value of this type of data collection strategy and which will be of value to other researchers interested in decision making where there is a potentially complex set of factors, such as those found in deciding on a major. • Paper # 2: We summarized student responses to a pre-interview climate survey about three domains – Teaching and Learning, Faculty and Peer Interactions, and Belonging and Commitment. We investigated two questions: Are there differences between persisters and switchers? And, are there differences by study major? Results indicate substantial differences between persisters and switchers and some differences between ME and ECE students. • Paper # 3: Preliminary analysis of interviews of 10 HBCU Black students and 10 PWI Black students revealed that students enact several different types of community cultural wealth, particularly family, navigational, aspirational, social and resistant capital. Early results suggest that the HBCU students enacted a different form of family capital that resided in their “HBCU family” and the opportunities that their college-based networks afforded them to succeed in the major. PWI students described various forms of navigational capital and assets that were enacted in order to succeed at their study institutions. Our paper concludes with implications for university policies and practices aimed toward underrepresented students.« less
  5. STEM graduation rates, cumulative GPAs, and final GPA distributions of years 2016 to 2019 graduates were evaluated for students who participated in Rice University’s STEM intervention (the Rice Emerging Scholars Program, or RESP, which is partly funded through an NSF SSTEM grant), which begins with a pre-freshman STEM summer bridge program. RESP participants (n=89) and a comparison category of students (n=81) were identified as being underprepared for STEM coursework. Outcomes from the rest of the graduating classes were also assessed (i.e., non-comparison, non-RESP students). Incoming high school AP and IB credits were a moderate predictor of cumulative graduation GPA. After controlling for test credits, student status predicted cumulative graduation GPA, with higher GPAs in the noncomparison, non-RESP condition. Seventy-two RESP students graduated with a STEM major (81% STEM retention) compared with 62% of comparison students and 87% of non-comparison, non-RESP students. A chi-square test found a significant difference in favor of higher STEM retention among RESP students than the comparison students. Of RESP STEM graduates, 94% graduated with at least a B- GPA, compared with 86% of the comparison students, and 97% of the non-comparison, non-RESP students. A chi-square test approached significance in favor of more B- and above GPAsmore »among RESP students than the comparison students. Overall, we found that high school preparation predicted STEM students’ graduation GPAs. Further, although RESP participation did not predict the cumulative GPAs of STEM majors, the program may: 1) improve STEM degree persistence and 2) ensure that more of the program’s STEM graduates achieve at least a B- cumulative graduation GPA. The number of RESP and comparison students is relatively small, yet these findings nevertheless offer preliminary evidence that the intervention may be effective at improving STEM outcomes for students who would otherwise struggle the most with their coursework. As more students graduate from the university, we will be able to make stronger conclusions about the effectiveness of RESP in improving outcomes of underprepared STEM students.« less