- Award ID(s):
- 1829623
- PAR ID:
- 10383531
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- The Biological Bulletin
- Volume:
- 243
- Issue:
- 2
- ISSN:
- 0006-3185
- Page Range / eLocation ID:
- 000 to 000
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Variations in stratospheric ozone and changes in the aquatic environment by climate change and human activity are modifying the exposure of aquatic ecosystems to UV radiation. These shifts in exposure have consequences for the distributions of species, biogeochemical cycles, and services provided by aquatic ecosystems. This Quadrennial Assessment presents the latest knowledge on the multi-faceted interactions between the effects of UV irradiation and climate change, and other anthropogenic activities, and how these conditions are changing aquatic ecosystems. Climate change results in variations in the depth of mixing, the thickness of ice cover, the duration of ice-free conditions and inputs of dissolved organic matter, all of which can either increase or decrease exposure to UV radiation. Anthropogenic activities release oil, UV filters in sunscreens, and microplastics into the aquatic environment that are then modified by UV radiation, frequently amplifying adverse effects on aquatic organisms and their environments. The impacts of these changes in combination with factors such as warming and ocean acidification are considered for aquatic micro-organisms, macroalgae, plants, and animals (floating, swimming, and attached). Minimising the disruptive consequences of these effects on critical services provided by the world’s rivers, lakes and oceans (freshwater supply, recreation, transport, and food security) will not only require continued adherence to the Montreal Protocol but also a wider inclusion of solar UV radiation and its effects in studies and/or models of aquatic ecosystems under conditions of the future global climate. Graphical abstractmore » « less
-
Aquatic ecosystems are increasingly threatened by multiple human-induced stressors associated with climate and anthropogenic changes, including warming, nutrient pollution, harmful algal blooms, hypoxia, and changes in CO 2 and pH. These stressors may affect systems additively and synergistically but may also counteract each other. The resultant ecosystem changes occur rapidly, affecting both biotic and abiotic components and their interactions. Moreover, the complexity of interactions increases as one ascends the food web due to differing sensitivities and exposures among life stages and associated species interactions, such as competition and predation. There is also a need to further understand nontraditional food web interactions, such as mixotrophy, which is the ability to combine photosynthesis and feeding by a single organism. The complexity of these interactions and nontraditional food webs presents challenges to ecosystem modeling and management. Developing ecological models to understand multistressor effects is further challenged by the lack of sufficient data on the effects of interactive stressors across different trophic levels and the substantial variability in climate changes on regional scales. To obtain data on a broad suite of interactions, a nested set of experiments can be employed. Modular, coupled, multitrophic level models will provide the flexibility to explore the additive, amplified, propagated, antagonistic, and/or reduced effects that can emerge from the interactions of multiple stressors. Here, the stressors associated with eutrophication and climate change are reviewed, and then example systems from around the world are used to illustrate their complexity and how model scenarios can be used to examine potential future changes.more » « less
-
Synopsis Anthropogenic change has well-documented impacts on stress physiology and behavior across diverse taxonomic groups. Within individual organisms, physiological and behavioral traits often covary at proximate and ultimate timescales. In the context of global change, this means that impacts on physiology can have downstream impacts on behavior, and vice versa. Because all organisms interact with members of their own species and other species within their communities, the effects of humans on one organism can impose indirect effects on one or more other organisms, resulting in cascading effects across interaction networks. Human-induced changes in the stress physiology of one species and the downstream impacts on behavior can therefore interact with the physiological and behavioral responses of other organisms to alter emergent ecological phenomena. Here, we highlight three scenarios in which the stress physiology and behavior of individuals on different sides of an ecological relationship are interactively impacted by anthropogenic change. We discuss host–parasite/pathogen dynamics, predator–prey relationships, and beneficial partnerships (mutualisms and cooperation) in this framework, considering cases in which the effect of stressors on each type of network may be attenuated or enhanced by interactive changes in behavior and physiology. These examples shed light on the ways that stressors imposed at the level of one individual can impact ecological relationships to trigger downstream consequences for behavioral and ecological dynamics. Ultimately, changes in stress physiology on one or both sides of an ecological interaction can mediate higher-level population and community changes due in part to their cascading impacts on behavior. This framework may prove useful for anticipating and potentially mitigating previously underappreciated ecological responses to anthropogenic perturbations in a rapidly changing world.more » « less
-
Abstract Organisms are increasingly likely to be exposed to multiple stressors repeatedly across ontogeny as climate change and other anthropogenic stressors intensify. Early life stages can be particularly sensitive to environmental stress, such that experiences early in life can “carry over” to have long‐term effects on organism fitness. Despite the potential importance of these within‐generation carryover effects, we have little understanding of how they vary across ecological contexts, particularly when organisms are re‐exposed to the same stressors later in life. In coastal marine systems, anthropogenic nutrients and warming water temperatures are reducing average dissolved oxygen (DO) concentrations while also increasing the severity of naturally occurring daily fluctuations in DO. Combined effects of warming and diel‐cycling DO can strongly affect the fitness and survival of coastal organisms, including the eastern oyster (
Crassostrea virginica ), a critical ecosystem engineer and fishery species. However, whether early life exposure to hypoxia and warming affects oysters' subsequent response to these stressors is unknown. Using a multiphase laboratory experiment, we explored how early life exposure to diel‐cycling hypoxia and warming affected oyster growth when oysters were exposed to these same stressors 8 weeks later. We found strong, interactive effects of early life exposure to diel‐cycling hypoxia and warming on oyster tissue : shell growth, and these effects were context‐dependent, only manifesting when oysters were exposed to these stressors again two months later. This change in energy allocation based on early life stress exposure may have important impacts on oyster fitness. Exposure to hypoxia and warming also influenced oyster tissue and shell growth, but only later in life. Our results show that organisms' responses to current stress can be strongly shaped by their previous stress exposure, and that context‐dependent carryover effects may influence the fitness, production, and restoration of species of management concern, particularly for sessile species such as oysters. -
Abstract Organisms are experiencing higher average temperatures and greater temperature variability because of anthropogenic climate change. Some populations respond to changes in temperature by shifting their ranges or adjusting their phenotypes via plasticity and/or evolution, while others go extinct. Predicting how populations will respond to temperature changes is challenging because extreme and unpredictable climate changes will exert novel selective pressures. For this reason, there is a need to understand the physiological mechanisms that regulate organismal responses to temperature changes. In vertebrates, glucocorticoid hormones mediate physiological and behavioral responses to environmental stressors and thus are likely to play an important role in how vertebrates respond to global temperature changes. Glucocorticoids have cascading effects that influence the phenotype and fitness of individuals, and some of these effects can be transmitted to offspring via trans- or intergenerational effects. Consequently, glucocorticoid-mediated responses could affect populations and could even be a powerful driver of rapid evolutionary change. Here, we present a conceptual framework that outlines how temperature changes due to global climate change could affect population persistence via glucocorticoid responses within and across generations (via epigenetic modifications). We briefly review glucocorticoid physiology, the interactions between environmental temperatures and glucocorticoid responses, and the phenotypic consequences of glucocorticoid responses within and across generations. We then discuss possible hypotheses for how glucocorticoid-mediated phenotypic effects might impact fitness and population persistence via evolutionary change. Finally, we pose pressing questions to guide future research. Understanding the physiological mechanisms that underpin the responses of vertebrates to elevated temperatures will help predict population-level responses to the changing climates we are experiencing.