skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Electron microscopy holdings of the Protein Data Bank: the impact of the resolution revolution, new validation tools, and implications for the future
Abstract

As a discipline, structural biology has been transformed by the three-dimensional electron microscopy (3DEM) “Resolution Revolution” made possible by convergence of robust cryo-preservation of vitrified biological materials, sample handling systems, and measurement stages operating a liquid nitrogen temperature, improvements in electron optics that preserve phase information at the atomic level, direct electron detectors (DEDs), high-speed computing with graphics processing units, and rapid advances in data acquisition and processing software. 3DEM structure information (atomic coordinates and related metadata) are archived in the open-access Protein Data Bank (PDB), which currently holds more than 11,000 3DEM structures of proteins and nucleic acids, and their complexes with one another and small-molecule ligands (~ 6% of the archive). Underlying experimental data (3DEM density maps and related metadata) are stored in the Electron Microscopy Data Bank (EMDB), which currently holds more than 21,000 3DEM density maps. After describing the history of the PDB and the Worldwide Protein Data Bank (wwPDB) partnership, which jointly manages both the PDB and EMDB archives, this review examines the origins of the resolution revolution and analyzes its impact on structural biology viewed through the lens of PDB holdings. Six areas of focus exemplifying the impact of 3DEM across the biosciences are discussed in detail (icosahedral viruses, ribosomes, integral membrane proteins, SARS-CoV-2 spike proteins, cryogenic electron tomography, and integrative structure determination combining 3DEM with complementary biophysical measurement techniques), followed by a review of 3DEM structure validation by the wwPDB that underscores the importance of community engagement.

 
more » « less
Award ID(s):
1756248 2112966
PAR ID:
10383571
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Biophysical Reviews
Volume:
14
Issue:
6
ISSN:
1867-2450
Page Range / eLocation ID:
p. 1281-1301
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Analyses of publicly available structural data reveal interesting insights into the impact of the three‐dimensional (3D) structures of protein targets important for discovery of new drugs (e.g., G‐protein‐coupled receptors, voltage‐gated ion channels, ligand‐gated ion channels, transporters, and E3 ubiquitin ligases). The Protein Data Bank (PDB) archive currently holds > 155,000 atomic‐level 3D structures of biomolecules experimentally determined using crystallography, nuclear magnetic resonance spectroscopy, and electron microscopy. The PDB was established in 1971 as the first open‐access, digital‐data resource in biology, and is now managed by the Worldwide PDB partnership (wwPDB;wwPDB.org). US PDB operations are the responsibility of the Research Collaboratory for Structural Bioinformatics PDB (RCSB PDB). The RCSB PDB serves millions ofRCSB.orgusers worldwide by delivering PDB data integrated with ∼40 external biodata resources, providing rich structural views of fundamental biology, biomedicine, and energy sciences. Recently published work showed that the PDB archival holdings facilitated discovery of ∼90% of the 210 new drugs approved by the US Food and Drug Administration 2010–2016. We review user‐driven development of RCSB PDB services, examine growth of the PDB archive in terms of size and complexity, and present examples and opportunities for structure‐guided drug discovery for challenging targets (e.g., integral membrane proteins).

     
    more » « less
  2. Abstract

    The Protein Data Bank (PDB) is one of two archival resources for experimental data central to biomedical research and education worldwide (the other key Primary Data Archive in biology being the International Nucleotide Sequence Database Collaboration). The PDB currently houses >134,000 atomic level biomolecular structures determined by crystallography, NMR spectroscopy, and 3D electron microscopy. It was established in 1971 as the first open‐access, digital‐data resource in biology, and is managed by the Worldwide Protein Data Bank partnership (wwPDB; wwpdb.org). US PDB operations are conducted by the RCSB Protein Data Bank (RCSB PDB; RCSB.org; Rutgers University and UC San Diego) and funded by NSF, NIH, and DoE. The RCSB PDB serves as the global Archive Keeper for the wwPDB. During calendar 2016, >591 million structure data files were downloaded from the PDB byData Consumersworking in every sovereign nation recognized by the United Nations. During this same period, the RCSB PDB processed >5300 new atomic level biomolecular structures plus experimental data and metadata coming into the archive fromData Depositorsworking in the Americas and Oceania. In addition, RCSB PDB served >1 million RCSB.org users worldwide with PDB data integrated with ∼40 external data resources providing rich structural views of fundamental biology, biomedicine, and energy sciences, and >600,000 PDB101.rcsb.org educational website users around the globe. RCSB PDB resources are described in detail together with metrics documenting the impact of access to PDB data on basic and applied research, clinical medicine, education, and the economy.

     
    more » « less
  3. Abstract

    The Electron Microscopy Data Bank (EMDB) is the global public archive of three-dimensional electron microscopy (3DEM) maps of biological specimens derived from transmission electron microscopy experiments. As of 2021, EMDB is managed by the Worldwide Protein Data Bank consortium (wwPDB; wwpdb.org) as a wwPDB Core Archive, and the EMDB team is a core member of the consortium. Today, EMDB houses over 30 000 entries with maps containing macromolecules, complexes, viruses, organelles and cells. Herein, we provide an overview of the rapidly growing EMDB archive, including its current holdings, recent updates, and future plans.

     
    more » « less
  4. The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), funded by the United States National Science Foundation, National Institutes of Health, and Department of Energy, supports structural biologists and Protein Data Bank (PDB) data users around the world. The RCSB PDB, a founding member of the Worldwide Protein Data Bank (wwPDB) partnership, serves as the US data center for the global PDB archive housing experimentally-determined three-dimensional (3D) structure data for biological macromolecules. As the wwPDB-designated Archive Keeper, RCSB PDB is also responsible for the security of PDB data and weekly update of the archive. RCSB PDB serves tens of thousands of data depositors (using macromolecular crystallography, nuclear magnetic resonance spectroscopy, electron microscopy, and micro-electron diffraction) annually working on all permanently inhabited continents. RCSB PDB makes PDB data available from its research-focused web portal at no charge and without usage restrictions to many millions of PDB data consumers around the globe. It also provides educators, students, and the general public with an introduction to the PDB and related training materials through its outreach and education-focused web portal. This review article describes growth of the PDB, examines evolution of experimental methods for structure determination viewed through the lens of the PDB archive, and provides a detailed accounting of PDB archival holdings and their utilization by researchers, educators, and students worldwide. 
    more » « less
  5. The Protein Data Bank (PDB) is the single global archive of atomic-level, three-dimensional structures of biological macromolecules experimentally determined by macromolecular crystallography, nuclear magnetic resonance spectroscopy or three-dimensional cryo-electron microscopy. The PDB is growing continuously, with a recent rapid increase in new structure depositions from Asia. In 2022, the Worldwide Protein Data Bank (wwPDB; https://www.wwpdb.org/) partners welcomed Protein Data Bank China (PDBc; https://www.pdbc.org.cn) to the organization as an Associate Member. PDBc is based in the National Facility for Protein Science in Shanghai which is associated with the Shanghai Advanced Research Institute of Chinese Academy of Sciences, the Shanghai Institute for Advanced Immunochemical Studies and the iHuman Institute of ShanghaiTech University. This letter describes the history of the wwPDB, recently established mechanisms for adding new wwPDB data centers and the processes developed to bring PDBc into the partnership.

     
    more » « less