skip to main content


Title: Quantifying the Natural Climate Solution Potential of Agricultural Systems by Combining Eddy Covariance and Remote Sensing
Abstract

Livestock agriculture accounts for ∼15% of global anthropogenic greenhouse gas (GHG) emissions. Recently, natural climate solutions (NCS) have been identified to mitigate farm‐scale GHG emissions. Nevertheless, their impacts are difficult to quantify due to farm spatial heterogeneity and effort required to measure changes in carbon stocks. Remote sensing (RS) models are difficult to parameterize for heterogeneous agricultural landscapes. Eddy covariance (EC) in combination with novel techniques that quantitatively match source area variations could help update such vegetation‐specific parameters while accounting for pronounced heterogeneity. We evaluate a plant physiological parameter, the maximum quantum yield (MQY), which is commonly used to calculate gross and net primary productivity in RS applications. RS models often rely on spatially invariable MQY, which leads to inconsistencies between RS and EC models. We evaluate if EC data improve RS models by updating crop specific MQYs to quantify agricultural GHG mitigation potentials. We assessed how farm harvest compared to annual sums of (a) RS without improvements, (b) EC results, and (c) EC‐RS models. We then estimated emissions to calculate the annual GHG balance, including mitigation through plant carbon uptake. Our results indicate that EC‐RS models significantly improved the prediction of crop yields. The EC model captures diurnal variations in carbon dynamics in contrast to RS models based on input limitations. A net zero GHG balance indicated that perennial vegetation mitigated over 60% of emissions while comprising 40% of the landscape. We conclude that the combination of RS and EC can improve the quantification of NCS in agroecosystems.

 
more » « less
Award ID(s):
1724433
NSF-PAR ID:
10383702
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
127
Issue:
9
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Agricultural soils play a dual role in regulating the Earth's climate by releasing or sequestering carbon dioxide (CO2) in soil organic carbon (SOC) and emitting non‐CO2greenhouse gases (GHGs) such as nitrous oxide (N2O) and methane (CH4). To understand how agricultural soils can play a role in climate solutions requires a comprehensive assessment of net soil GHG balance (i.e., sum of SOC‐sequestered CO2and non‐CO2GHG emissions) and the underlying controls. Herein, we used a model‐data integration approach to understand and quantify how natural and anthropogenic factors have affected the magnitude and spatiotemporal variations of the net soil GHG balance in U.S. croplands during 1960–2018. Specifically, we used the dynamic land ecosystem model for regional simulations and used field observations of SOC sequestration rates and N2O and CH4emissions to calibrate, validate, and corroborate model simulations. Results show that U.S. agricultural soils sequestered Tg CO2‐C year−1in SOC (at a depth of 3.5 m) during 1960–2018 and emitted Tg N2O‐N year−1and Tg CH4‐C year−1, respectively. Based on the GWP100 metric (global warming potential on a 100‐year time horizon), the estimated national net GHG emission rate from agricultural soils was Tg CO2‐eq year−1, with the largest contribution from N2O emissions. The sequestered SOC offset ~28% of the climate‐warming effects resulting from non‐CO2GHG emissions, and this offsetting effect increased over time. Increased nitrogen fertilizer use was the dominant factor contributing to the increase in net GHG emissions during 1960–2018, explaining ~47% of total changes. In contrast, reduced cropland area, the adoption of agricultural conservation practices (e.g., reduced tillage), and rising atmospheric CO2levels attenuated net GHG emissions from U.S. croplands. Improving management practices to mitigate N2O emissions represents the biggest opportunity for achieving net‐zero emissions in U.S. croplands. Our study highlights the importance of concurrently quantifying SOC‐sequestered CO2and non‐CO2GHG emissions for developing effective agricultural climate change mitigation measures.

     
    more » « less
  2. Abstract Wildfires in humid tropical forests have become more common in recent years, increasing the rates of tree mortality in forests that have not co-evolved with fire. Estimating carbon emissions from these wildfires is complex. Current approaches rely on estimates of committed emissions based on static emission factors through time and space, yet these emissions cannot be assigned to specific years, and thus are not comparable with other temporally-explicit emission sources. Moreover, committed emissions are gross estimates, whereas the long-term consequences of wildfires require an understanding of net emissions that accounts for post-fire uptake of CO 2 . Here, using a 30 year wildfire chronosequence from across the Brazilian Amazon, we calculate net CO 2 emissions from Amazon wildfires by developing statistical models comparing post-fire changes in stem mortality, necromass decomposition and vegetation growth with unburned forest plots sampled at the same time. Over the 30 yr time period, gross emissions from combustion during the fire and subsequent tree mortality and decomposition were equivalent to 126.1 Mg CO 2 ha −1 of which 73% (92.4 Mg CO 2 ha −1 ) resulted from mortality and decomposition. These emissions were only partially offset by forest growth, with an estimated CO 2 uptake of 45.0 Mg ha −1 over the same time period. Our analysis allowed us to assign emissions and growth across years, revealing that net annual emissions peak 4 yr after forest fires. At present, Brazil’s National Determined Contribution (NDC) for emissions fails to consider forest fires as a significant source, even though these are likely to make a substantial and long-term impact on the net carbon balance of Amazonia. Considering long-term post-fire necromass decomposition and vegetation regrowth is crucial for improving global carbon budget estimates and national greenhouse gases (GHG) inventories for tropical forest countries. 
    more » « less
  3. Abstract

    Grassland ecosystems play an essential role in climate regulation through carbon (C) storage in plant and soil. But, anthropogenic practices such as livestock grazing, grazing related excreta nitrogen (N) deposition, and manure/fertilizer N application have the potential to reduce the effectiveness of grassland C sink through increased nitrous oxide (N2O) and methane (CH4) emissions. Although the effect of anthropogenic activities on net greenhouse gas (GHG) fluxes in grassland ecosystems have been investigated at local to regional scales, estimates of net GHG balance at the global scale remains uncertain. With the data-model framework integrating empirical estimates of livestock CH4emissions with process-based modeling estimates of land CO2, N2O and CH4fluxes, we examined the overall global warming potential (GWP) of grassland ecosystems during 1961–2010. We then quantified the grassland-specific and regional variations to identify hotspots of GHG fluxes. Our results show that, over a 100-year time horizon, grassland ecosystems sequestered a cumulative total of 113.9 Pg CO2-eq in plant and soil, but then released 91.9 Pg CO2-eq to the atmosphere, offsetting 81% of the net CO2sink. We also found large grassland-specific variations in net GHG fluxes, withpasturelandsacting as a small GHG source of 1.52 ± 143 Tg CO2-eq yr−1(mean ± 1.0 s.d.) andrangelandsa strong GHG sink (−442 ± 266 Tg CO2-eq yr−1) during 1961–2010. Regionally, Europe acted as a GHG source of 23 ± 10 Tg CO2-eq yr−1, while other regions (i.e. Africa, Southern Asia) were strong GHG sinks during 2001–2010. Our study highlights the importance of considering regional and grassland-specific differences in GHG fluxes for guiding future management and climate mitigation strategies in global grasslands.

     
    more » « less
  4. Abstract

    21st‐century modeling of greenhouse gas (GHG) emissions from bioenergy crops is necessary to quantify the extent to which bioenergy production can mitigate climate change. For over 30 years, the Century‐based biogeochemical models have provided the preeminent framework for belowground carbon and nitrogen cycling in ecosystem and earth system models. While monthly Century and the daily time‐step version of Century (DayCent) have advanced our ability to predict the sustainability of bioenergy crop production, new advances in feedstock generation, and our empirical understanding of sources and sinks of GHGs in soils call for a re‐visitation of DayCent's core model structures. Here, we evaluate current challenges with modeling soil carbon dynamics, trace gas fluxes, and drought and age‐related impacts on bioenergy crop productivity. We propose coupling a microbial process‐based soil organic carbon and nitrogen model with DayCent to improve soil carbon dynamics. We describe recent improvements to DayCent for simulating unique plant structural and physiological attributes of perennial bioenergy grasses. Finally, we propose a method for using machine learning to identify key parameters for simulating N2O emissions. Our efforts are focused on meeting the needs for modeling bioenergy crops; however, many updates reviewed and suggested to DayCent will be broadly applicable to other systems.

     
    more » « less
  5. Abstract

    Atmospheric greenhouse gases (GHGs) must be reduced to avoid an unsustainable climate. Because carbon dioxide is removed from the atmosphere and sequestered in forests and wood products, mitigation strategies to sustain and increase forest carbon sequestration are being developed. These strategies require full accounting of forest sector GHG budgets. Here, we describe a rigorous approach using over one million observations from forest inventory data and a regionally calibrated life-cycle assessment for calculating cradle-to-grave forest sector emissions and sequestration. We find that Western US forests are net sinks because there is a positive net balance of forest carbon uptake exceeding losses due to harvesting, wood product use, and combustion by wildfire. However, over 100 years of wood product usage is reducing the potential annual sink by an average of 21%, suggesting forest carbon storage can become more effective in climate mitigation through reduction in harvest, longer rotations, or more efficient wood product usage. Of the ∼10 700 million metric tonnes of carbon dioxide equivalents removed from west coast forests since 1900, 81% of it has been returned to the atmosphere or deposited in landfills. Moreover, state and federal reporting have erroneously excluded some product-related emissions, resulting in 25%–55% underestimation of state total CO2emissions. For states seeking to reach GHG reduction mandates by 2030, it is important that state CO2budgets are effectively determined or claimed reductions will be insufficient to mitigate climate change.

     
    more » « less