skip to main content


Title: Allopatry, hybridization, and reproductive isolation in Arctostaphylos
PREMISE

Hybridization plays a key role in introgressive adaptation, speciation, and adaptive radiation as a source of evolutionary innovation. Hybridization is considered common inArctostaphylos, yet species boundaries are retained in stands containing multiple species.Arctostaphyloscontains diploids and tetraploids, and recent phylogenies indicate two clades; we hypothesize combinations of these traits limit or promote hybridization rates.

METHODS

We statistically analyzed co‐occurrence patterns of species by clade membership and ploidy level from 87 random 0.1 ha plots. We sampled multiple sites to analyze for percent hybridization based on morphology. Finally, phenophases were analyzed by scoring herbarium sheets for a large number of taxa from both clades as well as tetraploids, and second, surveying three field sites over two years for divergence in phenological stages between co‐occurring taxa.

RESULTS

Most taxa inArctostaphylosare allopatric relative to other congenerics. When two taxa co‐occur, the patterns are a diploid with a tetraploid, or two diploids from different clades. When three taxa co‐occur, the pattern is two diploids from different clades and a tetraploid. Field and herbarium data both indicate flowering phenology is displaced between diploids from the two clades; one of the diploid clades and tetraploids overlap considerably.

CONCLUSIONS

The two deep clades inArctostaphylosare genetically distant, with hybrids rare or non‐existent when taxa co‐occur. Reproductive isolation between clades is enhanced by displaced flowering phenology for co‐occurring species. Within clades, taxa appear to have few reproductive barriers other than an allopatric distribution or different ploidy levels.

 
more » « less
NSF-PAR ID:
10383704
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Botany
Volume:
107
Issue:
12
ISSN:
0002-9122
Page Range / eLocation ID:
p. 1798-1814
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Premise

    Whole‐genome duplication (polyploidy) is an important force shaping flowering‐plant evolution. Ploidy‐specific plant–pollinator interactions represent important community‐level biotic interactions that can lead to nonrandom mating and the persistence of mixed‐ploidy populations.

    Methods

    At a naturally occurring diploid–tetraploid contact zone of the autopolyploid desert shrubLarrea tridentata, we combined flower phenology analyses, collections of bees on plants of known cytotype, and flow cytometry analyses of bee‐collected pollen loads to investigate whether (1) diploid and tetraploid plants have unique bee pollinator assemblages, (2) bee taxa exhibit ploidy‐specific visitation and pollen collection biases, and (3) specialist and generalist bee taxa have ploidy‐specific visitation and pollen collection biases.

    Results

    Although bee assemblages overlapped, we found significant differences in bee visitation to co‐occurring diploids and tetraploids, with the introduced honeybee (Apis mellifera) and one native species (Andrenaspecies 12) more frequently visiting tetraploids. Consistent with bee assemblage differences, we found that diploid pollen was overrepresented among pollen loads on native bees, while pollen loads onA. melliferadid not deviate from the random expectation. However, mismatches between the ploidy of pollen loads and plants were common, consistent with ongoing intercytotype gene flow.

    Conclusions

    Our data are consistent with cytotype‐specific bee visitation and suggest that pollinator behavior contributes to reduced diploid–tetraploid mating. Differences in bee visitation and pollen movement potentially contribute to an easing of minority cytotype exclusion and the facilitation of cytotype co‐occurrence.

     
    more » « less
  2. Current and past climatic changes can shift plant climatic niches, which may cause spatial overlap or separation between related taxa. The former often leads to hybridization and introgression, which may generate novel variation and influence the adaptive capacity of plants. An additional mechanism facilitating adaptations to novel environments and an important evolutionary driver in plants is polyploidy as the result of whole genome duplication. Artemisia tridentata (big sagebrush) is a landscape-dominating foundational shrub in the western United States which occupies distinct ecological niches, exhibiting diploid and tetraploid cytotypes. Tetraploids have a large impact on the species’ landscape dominance as they occupy a preponderance of the arid spectrum of A. tridentata range. Three distinct subspecies are recognized, which co-occur in ecotones – the transition zone between two or more distinct ecological niches – allowing for hybridization and introgression. Here we assess the genomic distinctiveness and extent of hybridization among subspecies at different ploidies under both contemporary and predicted future climates. We sampled five transects throughout the western United States where a subspecies overlap was predicted using subspecies-specific climate niche models. Along each transect, we sampled multiple plots representing the parental and the potential hybrid habitats. We performed reduced representation sequencing and processed the data using a ploidy-informed genotyping approach. Population genomic analyses revealed distinct diploid subspecies and at least two distinct tetraploid gene pools, indicating independent origins of the tetraploid populations. We detected low levels of hybridization (2.5%) between the diploid subspecies, while we found evidence for increased admixture between ploidy levels (18%), indicating hybridization has an important role in the formation of tetraploids. Our analyses highlight the importance of subspecies co-occurrence within these ecotones to maintain gene exchange and potential formation of tetraploid populations. Genomic confirmations of subspecies in the ecotones support the subspecies overlap predicted by the contemporary climate niche models. However, future mid-century projections of subspecies niches predict a substantial loss in range and subspecies overlap. Thus, reductions in hybridization potential could affect new recruitment of genetically variable tetraploids that are vital to this species’ ecological role. Our results underscore the importance of ecotone conservation and restoration. 
    more » « less
  3. Premise

    Although autopolyploidy is common among dominant Great Plains grasses, the distribution of cytotypes within a given species is typically poorly understood. This study aims to establish the geographic distribution of cytotypes within buffalograss (Buchloë dactyloides) and to assess whether individual cytotypes have differing ecological tolerances.

    Methods

    A range‐wide set of 578B. dactyloidesindividuals was obtained through field collecting and sampling from herbarium specimens. The cytotype of each sample was estimated by determining allele numbers at 13 simple sequence repeat loci, a strategy that was assessed by comparing estimated to known cytotype in 79 chromosome‐counted samples. Ecological differentiation between the dominant tetraploid and hexaploid cytotypes was assessed with analyses of macroclimatic variables.

    Results

    Simple sequence repeat variation accurately estimated cytotype in 89% of samples from which a chromosome count had been obtained. Applying this approach to samples of unknown ploidy established that diploids and pentaploids are rare, with the common tetraploid and hexaploid cytotypes generally occurring in sites to the north/west (tetraploid) or south/east (hexaploid) portions of the species range. BothMANOVAand niche modeling approaches identified significant but subtle differences in macroclimatic conditions at the set of locations occupied by these two dominant cytotypes.

    Conclusions

    Incorporating chromosome count vouchers and cytotype‐estimated herbarium records allowed us to perform the largest study of cytotype niche differentiation to date. Buffalograss cytotypes differ greatly in frequency, the common tetraploid and hexaploid cytotypes are non‐randomly distributed, and these two cytotypes are subtly ecologically differentiated.

     
    more » « less
  4. Polyploidy commonly occurs in invasive species, and phenotypic plasticity (PP, the ability to alter one's phenotype in different environments) is predicted to be enhanced in polyploids and to contribute to their invasive success. However, empirical support that increased PP is frequent in polyploids and/or confers invasive success is limited. Here, we investigated if polyploids are more pre‐adapted to become invasive than diploids via the scaling of trait values and PP with ploidy level, and if post‐introduction selection has led to a divergence in trait values and PP responses between native‐ and non‐native cytotypes. We grew diploid, tetraploid (from both native North American and non‐native European ranges), and hexaploidSolidago giganteain pots outside with low, medium, and high soil nitrogen and phosphorus (NP) amendments, and measured traits related to growth, asexual reproduction, physiology, and insects/pathogen resistance. Overall, we found little evidence to suggest that polyploidy and post‐introduction selection shaped mean trait and PP responses. When we compared diploids to tetraploids (as their introduction into Europe was more likely than hexaploids) we found that tetraploids had greater pathogen resistance, photosynthetic capacities, and water‐use efficiencies and generally performed better under NP enrichments. Furthermore, tetraploids invested more into roots than shoots in low NP and more into shoots than roots in high NP, and this resource strategy is beneficial under variable NP conditions. Lastly, native tetraploids exhibited greater plasticity in biomass accumulation, clonal‐ramet production, and water‐use efficiency. Cumulatively, tetraploidS. giganteapossesses traits that might have predisposed and enabled them to become successful invaders. Our findings highlight that trait expression and invasive species dynamics are nuanced, while also providing insight into the invasion success and cyto‐geographic patterning ofS. giganteathat can be broadly applied to other invasive species with polyploid complexes.

     
    more » « less
  5. Abstract Aim

    Polyploids have been theorized to occur more frequently in environments that are subjected to severe conditions or sudden disruptions. Here we test the expectation that polyploid taxa occur more frequently in extreme or disrupted environments than their diploid counterparts, whether due to increased adaptive potential, environmental resilience or cross‐ploidy competition.

    Location

    South America.

    Taxon

    All frog genera in the area with both polyploid and diploid member species (Ceratophrys, Chiasmocleis, Odontophrynus, PhyllomedusaandPleurodema).

    Methods

    In all, 13,556 occurrence records of 82 frog species were collected from the Global Biodiversity Information Facility. Species distribution models, range overlap estimates, statistical tests and principal component analyses were used to estimate and compare environments between diploid and polyploid species within and across genera using several categorical and quantitative variables taken from multiple publicly available sources.

    Results

    Almost all polyploid occurrences are found within southeastern South America, largely to the exclusion of diploids. Polyploid species occur more closely with intergeneric polyploids than they do with congeneric diploids. Southeastern South America is more temperate, seasonal and less forested when compared to the tropical environments more commonly inhabited by diploids. The habitat ranges of polyploid species are subject to greater temperature fluctuations than diploid species. This region has also experienced major transformations in the modern era, owing to an agriculture boom over the last century. Polyploid occurrences are more likely to be found in areas with greater cropland usage, fertilizer application and pesticide application than diploids.

    Main Conclusions

    Across species, temperature seasonality was the only variable with strong statistical differences between diploids and polyploids. Greater annual fluctuations in temperature may lead to more established polyploid species due to reasons mentioned above; however, extreme temperature differences are also known to contribute to polyploid gamete formation, providing a possible non‐selective explanation. Polyploid occurrences are also more likely to be found in areas of high agricultural impact, providing support for the hypothesis that polyploids are more resilient to environmental disruptions than diploids.

     
    more » « less