Abstract Maunaloa—the largest active volcano on Earth—erupted in 2022 after its longest known repose period (~38 years) and two decades of volcanic unrest. This eruptive hiatus at Maunaloa encompasses most of the ~35-year-long Puʻuʻōʻō eruption of neighboring Kīlauea, which ended in 2018 with a collapse of the summit caldera and an unusually voluminous (~1 km3) rift eruption. A long-term pattern of such anticorrelated eruptive behavior suggests that a magmatic connection exists between these volcanoes within the asthenospheric mantle source and melting region, the lithospheric mantle, and/or the volcanic edifice. The exact nature of this connection is enigmatic. In the past, the distinct compositions of lavas from Kīlauea and Maunaloa were thought to require completely separate magma pathways from the mantle source of each volcano to the surface. Here, we use a nearly 200-yr record of lava chemistry from both volcanoes to demonstrate that melt from a shared mantle source within the Hawaiian plume may be transported alternately to Kīlauea or Maunaloa on a timescale of decades. This process led to a correlated temporal variation in 206Pb/204Pb and 87Sr/86Sr at these volcanoes since the early 19th century with each becoming more active when it received melt from the shared source. Ratios of highly over moderately incompatible trace elements (e.g. Nb/Y) at Kīlauea reached a minimum from ~2000 to 2010, which coincides with an increase in seismicity and inflation at the summit of Maunaloa. Thereafter, a reversal in Nb/Y at Kīlauea signals a decline in the degree of mantle partial melting at this volcano and suggests that melt from the shared source is now being diverted from Kīlauea to Maunaloa for the first time since the early to mid-20th century. These observations link a mantle-related shift in melt generation and transport at Kīlauea to the awakening of Maunaloa in 2002 and its eruption in 2022. Monitoring of lava chemistry is a potential tool that may be used to forecast the behavior (e.g. eruption rate and frequency) of these adjacent volcanoes on a timescale of decades. A future increase in eruptive activity at Maunaloa is likely if the temporal increase in Nb/Y continues at Kīlauea. 
                        more » 
                        « less   
                    
                            
                            Comprehensive High‐Precision Relocation of Seismicity on the Island of Hawai‘i 1986–2018
                        
                    
    
            Abstract Abundant seismicity beneath the Island of Hawai‘i from mantle depths to the surface plays a central role in understanding how volcanoes work, grow, and evolve at this intraplate oceanic hotspot. We perform systematic waveform cross‐correlation, cluster analysis, and relative relocation of 347,445 events representing 32 years of seismicity on and around the island from 1986 to 2018. We successfully relocate 275,009 (79%) events using ∼1.7 billion differential times (PandS) from ∼128 million similar‐event pairs. The results reveal a dramatic sharpening of seismicity along faults, streaks, rings, rift zones, magma pathways, and mantle fault zones; seismicity delineating crustal detachments on the flanks of Kīlauea and Mauna Loa is particularly well‐resolved. The resulting high‐precision spatio‐temporal image of seismicity captures almost the entire 1983–2018 Pu‘u ‘Ō‘ō‐Kūpaianaha eruption of Kīlauea with its numerous distinct episodes and wide‐ranging activity, culminating in the 2018 lower East Rift Zone eruption and summit collapse. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1446543
- PAR ID:
- 10383791
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Earth and Space Science
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2333-5084
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We examine the spatiotemporal variations in seismic parameters corresponding to the 2018 Kīlauea eruption. We find that the summit area had mainly strike‐slip focal solutions prior to the eruption, whereas normal‐faulting was the predominant feature during the eruption, partially due to the collapse events. In contrast, the majority of the earthquakes in the central south flank had normal‐faulting solutions before December 2017, in agreement with the normal‐faulting of the Hilina Fault System, while there are more reverse solutions during the eruption. We also observe temporal variations in the estimated in situratios corresponding to the eruption, with increases in the summit and decreases in the East Rift Zone. The sustained lowratios below 4 km depth under the summit caldera may suggest persistent ascent of volatiles from the mantle. The lowvalues in the East Rift Zone are probably associated with increased degassing.more » « less
- 
            Abstract The intrusion of magma into Kīlauea's lower East Rift Zone in May 2018 led to the largest eruption along this segment of the volcano in over 200 years. As magma drained from the rift zone, leading to the collapse of Pu'u ‘Ō‘ō, pressure at the summit initially remained elevated and dropped at a slower rate compared to historical intrusion events. The anomalously long timescale of summit deflation suggests that the dike was fed from multiple sources. Here we show that dikes can serve as “dipsticks” of magma reservoirs and that the co‐evolution of dike growth and reservoir deflation constrains key magma transport parameters. Using coupled dike‐chamber models constrained by ground deformation and seismicity, we test four configurations of magma plumbing in order to illuminate which reservoirs and transport pathways were activated during the intrusion phase (30 April to 3 May) of the 2018 event. Slow summit deflation relative to the rate of dike propagation is best explained by a model in which the dike initiates from a compressible magma reservoir in the East Rift Zone, which then drains magma upstream from the Halema'uma'u reservoir through a shallow transport system. We use a Bayesian Markov chain Monte Carlo (MCMC) approach to estimate storage parameters for both reservoirs as well as the effective conductivity of the shallow magma transport system in the East Rift Zone, finding good agreement with independent estimates. Our results suggest that the rupture of reservoirs from within the East Rift Zone presents a unique hazard at Kīlauea.more » « less
- 
            Abstract We investigate earthquake distribution and focal mechanisms associated with the 2018 Kīlauea volcano eruption in Hawaii. Our high‐precision earthquake relocations delineate an aseismic zone bounded by two subhorizontal bands of seismicity at 3.5 and 7 km depths beneath the eastern south flank, both of which are dominated by the shallow‐dipping reverse faulting during the 2018 activity. We interpret the deeper seismicity as related to the basal décollement that separates the volcanic edifice from the oceanic crust. The shallower seismicity is a feature exhibited in the recent activity and, which we propose, reveals a detachment that either represents the contact between Mauna Loa and Kīlauea volcanoes or coincides with the onland extension of the base of the Hilina slump. We suggest that large earthquakes, such as the 1975 Mw 7.7 and the 2018 Mw 6.9 mainshocks, are capable of triggering failures of both the basal décollement and the shallower surface.more » « less
- 
            Abstract Very‐long‐period (VLP) volcano seismicity often encodes subsurface magma movement, and thus provides insight into subsurface magma transport processes. We develop a fully automated signal processing workflow using wavelet transforms to detect and assess period, decay rate, and ground motions of resonant VLP signals. We then generate a VLP catalog over the 2008–2018 open‐vent summit eruption of Kīlauea Volcano containing thousands of events. Two types of magma resonance dominate our catalog: vertical sloshing of the open magma column in and out of the shallow magma reservoir, and lateral sloshing of magma in the lava lake. These events were triggered mainly from the surface and less commonly from depth. The VLP catalog is then combined with other geophysical datasets to characterize evolution of the shallow magma system. VLP ground motion patterns show both abrupt and gradual changes in shallow magma reservoir geometry. Variation in resonant periods and decay rates of both resonance types occurred on timescales from hours to years, indicating variation in magma density and viscosity that likely reflect unsteady shallow outgassing and convection. A lack of correlation between decay rates of the two dominant resonant modes suggests a decoupling between magma in the conduit and lava lake. Known intrusions and rift zone eruptions often represented change points for resonance characteristics and their relations with other datasets. This data synthesis over a 10‐year eruptive episode at Klauea Volcano demonstrates how VLP seismicity can sharpen insights into magma system evolution for use in monitoring and understanding eruptive processes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
