skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Hierarchy Establishment from Nonlinear Social Interactions and Metabolic Costs: An Application to Harpegnathos saltator
Social hierarchies are ubiquitous in social groups such as human societies and social insect colonies; however, the factors that maintain these hierarchies are less clear. Motivated by the shared reproductive hierarchy of the ant species Harpegnathos saltator, we have developed simple compartmental nonlinear differential equations to explore how key life-history and metabolic rate parameters may impact and determine its colony size and the length of its shared hierarchy. Our modeling approach incorporates nonlinear social interactions and metabolic theory. The results from the proposed model, which were linked with limited data, show that: (1) the proportion of reproductive individuals decreases over colony growth; (2) an increase in mortality rates can diminish colony size but may also increase the proportion of reproductive individuals; and (3) the metabolic rates have a major impact in the colony size and structure of a shared hierarchy.  more » « less
Award ID(s):
2052820 1716802
PAR ID:
10383918
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Applied Sciences
Volume:
12
Issue:
9
ISSN:
2076-3417
Page Range / eLocation ID:
4239
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Social hierarchies are widespread in human and animal societies, and an individual’s position in its hierarchy affects both its access to resources and its fitness. Hierarchies are traditionally thought of in terms of variation in individual ability to win fights, but many are structured around arbitrary conventions like nepotistic inheritance rather than such traits as physical strength or weapon size. These convention-based societies are perplexing because position in the hierarchy appears to be gained irrespective of individual physical ability, yet social status strongly affects access to resources and fitness. It remains unclear why individuals abide by seemingly arbitrary conventions regarding social status when they stand to benefit by ignoring these conventions and competing for top positions or access to resources. Using data from wild spotted hyenas collected over 27 y and five generations, we show that individuals who repeatedly form coalitions with their top allies are likely to improve their position in the hierarchy, suggesting that social alliances facilitate revolutionary social change. Using lifetime reproductive success as a fitness measure, we go on to demonstrate that these status changes can have major fitness consequences. Finally, we show that the consequences of these changes may become even more dramatic over multiple generations, as small differences in social rank become amplified over time. This work represents a first step in reconciling the advantages of high status with the appearance of “arbitrary” conventions that structure inequality in animal and human societies.

     
    more » « less
  2. null (Ed.)
    Abstract Group-size variation is common in colonially breeding species, including seabirds, whose breeding colonies can vary in size by several orders of magnitude. Seabirds are some of the most threatened marine taxa and understanding the drivers of colony size variation is more important than ever. Reproductive success is an important demographic parameter that can impact colony size, and it varies in association with a number of factors, including nesting habitat quality. Within colonies, seabirds often aggregate into distinct groups or subcolonies that may vary in quality. We used data from two colonies of Adélie penguins 73 km apart on Ross Island, Antarctica, one large and one small to investigate (1) How subcolony habitat characteristics influence reproductive success and (2) How these relationships differ at a small (Cape Royds) and large (Cape Crozier) colony with different terrain characteristics. Subcolonies were characterized using terrain attributes (elevation, slope aspect, slope steepness, wind shelter, flow accumulation), as well group characteristics (area/size, perimeter-to-area ratio, and proximity to nest predators). Reproductive success was higher and less variable at the larger colony while subcolony characteristics explained more of the variance in reproductive success at the small colony. The most important variable influencing subcolony quality at both colonies was perimeter-to-area ratio, likely reflecting the importance of nest predation by south polar skuas along subcolony edges. The small colony contained a higher proportion of edge nests thus higher potential impact from skua nest predation. Stochastic environmental events may facilitate smaller colonies becoming “trapped” by nest predation: a rapid decline in the number of breeding individuals may increase the proportion of edge nests, leading to higher relative nest predation and hindering population recovery. Several terrain covariates were retained in the final models but which variables, the shapes of the relationships, and importance varied between colonies. 
    more » « less
  3. Abstract

    Orchid bees are the only corbiculate bee lineage that is not obligately eusocial. However, multiple species of orchid bee show facultative sociality, with reproductive division of labor and a social hierarchy effectively enforced by oophagy. Orchid bee species differ in the degree of reproductive skew in social groups, as well as the rigidity of social roles. In the orchid beeEuglossa dilemma, previous observation of social groups of two or three individuals found that reproductive skew was complete, with one clear dominant individual that ate and replaced each subordinate laid egg. Here, we compare patterns of egg laying and egg-replacement between typical social nests of 2–3 individuals and larger social nests of 4–5 individuals. We find a striking difference in the reproductive behavior of colonies of varying group size; larger nests exhibit more reproductive inefficiency and conflict over the dominant social position, characterized by repeated oophagy and slower egg replacement. Our findings are consistent with the hypothesis that group size inE. dilemmamay be limited by the ability of dominant bees to keep up with egg replacement. We discuss the possible causes and consequences of observed behavioral variation and its implications for understanding social behavior in orchid bees.

     
    more » « less
  4. Abstract

    Coloniality may grant colony members an energetic advantage in the form of lower individual respiration rates as colony size increases. If this occurs it should be apparent as negative allometric scaling of respiration with colony size, and colonial organisms should have scaling factors < 1. However, colonial members from phylum Rotifera have yet to be examined. To test if colonial rotifers possess allometric scaling relationships between respiration rate and colony size, we measured respiration rates for four solitary and three colonial rotifer species; from these respiration rates we estimated scaling factors. We found mixed evidence for allometric scaling of respiration rate in colonial rotifers. Both rotifers with allometric scaling of respiration rate,Conochilus hippocrepisandLacinularia flosculosa, have extensive mucilaginous coverings. These coverings may represent an investment of colony members into a shared structure, lowering individual metabolic costs and thus respiratory needs. Additionally, we determined which traits are associated with allometric scaling of respiration. We compiled known scaling factors for animal phyla from a wide phylogenetic spectrum with colonial representatives and conducted a hierarchical mixed regression that included attributes of colonies. Traits associated with allometric scaling in colonial animals included colony shape, the presence of shared extrazooidal structures, and planktonic lifestyle. There are many other colonial rotifers and animal taxa for which allometric scaling factors have yet to be estimated, knowing these may enhance our understanding of the benefits of coloniality in animals.

     
    more » « less
  5. Animal groups are often organized hierarchically, with dominant individuals gaining priority access to resources and reproduction over subordinate individuals. Initial dominance hierarchy formation may be influenced by multiple interacting factors, including an animal's individual attributes, conventions and self-organizing social dynamics. After establishment, hierarchies are typically maintained over the long-term because individuals save time, energy and reduce the risk of injury by recognizing and abiding by established dominance relationships. A separate set of behaviours are used to maintain dominance relationships within groups, including behaviours that stabilize ranks (punishment, threats, behavioural asymmetry), as well as signals that provide information about dominance rank (individual identity signals, signals of dominance). In this review, we describe the behaviours used to establish and maintain dominance hierarchies across different taxa and types of societies. We also review opportunities for future research including: testing how self-organizing behavioural dynamics interact with other factors to mediate dominance hierarchy formation, measuring the long-term stability of social hierarchies and the factors that disrupt hierarchy stability, incorporating phenotypic plasticity into our understanding of the behavioural dynamics of hierarchies and considering how cognition coevolves with the behaviours used to establish and maintain hierarchies.

    This article is part of the theme issue ‘The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies’.

     
    more » « less