skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A paradox of parasite resistance: disease-driven trophic cascades increase the cost of resistance, selecting for lower resistance with parasites than without them
Award ID(s):
1655656 2010826
PAR ID:
10384187
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Evolutionary Ecology
ISSN:
0269-7653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY Sorghum is an important food and feed crop globally; its production is hampered by anthracnose disease caused by the fungal pathogenColletotrichum sublineola(Cs). Here, we report identification and characterization ofANTHRACNOSE RESISTANCE GENE 2(ARG2) encoding a nucleotide‐binding leucine‐rich repeat (NLR) protein that confers race‐specific resistance toCsstrains.ARG2is one of a cluster of severalNLRgenes initially identified in the sorghum differential line SC328C that is resistant to someCsstrains. This cluster shows structural and copy number variations in different sorghum genotypes. Different sorghum lines carrying independentARG2alleles provided the genetic validation for the identity of theARG2gene.ARG2expression is induced byCs, and chitin inducesARG2expression in resistant but not in susceptible lines. ARG2‐mediated resistance is accompanied by higher expression of defense and secondary metabolite genes at early stages of infection, and anthocyanin and zeatin metabolisms are upregulated in resistant plants. Interestingly, ARG2 localizes to the plasma membrane when transiently expressed inNicotiana benthamiana. Importantly,ARG2plants produced higher shoot dry matter than near‐isogenic lines carrying the susceptible allele suggesting an absence of anARG2associated growth trade‐off. Furthermore, ARG2‐mediated resistance is stable at a wide range of temperatures. Our observations open avenues for resistance breeding and for dissecting mechanisms of resistance. 
    more » « less