skip to main content


Title: Parasite‐driven cascades or hydra effects: Susceptibility and foraging depression shape parasite–host–resource interactions
Award ID(s):
1655656 2010826
NSF-PAR ID:
10384194
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Functional Ecology
Volume:
36
Issue:
5
ISSN:
0269-8463
Page Range / eLocation ID:
1268 to 1278
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Long-term data allow ecologists to assess trajectories of population abundance. Without this context, it is impossible to know whether a taxon is thriving or declining to extinction. For parasites of wildlife, there are few long-term data—a gap that creates an impediment to managing parasite biodiversity and infectious threats in a changing world. We produced a century-scale time series of metazoan parasite abundance and used it to test whether parasitism is changing in Puget Sound, United States, and, if so, why. We performed parasitological dissection of fluid-preserved specimens held in natural history collections for eight fish species collected between 1880 and 2019. We found that parasite taxa using three or more obligately required host species—a group that comprised 52% of the parasite taxa we detected—declined in abundance at a rate of 10.9% per decade, whereas no change in abundance was detected for parasites using one or two obligately required host species. We tested several potential mechanisms for the decline in 3+-host parasites and found that parasite abundance was negatively correlated with sea surface temperature, diminishing at a rate of 38% for every 1 °C increase. Although the temperature effect was strong, it did not explain all variability in parasite burden, suggesting that other factors may also have contributed to the long-term declines we observed. These data document one century of climate-associated parasite decline in Puget Sound—a massive loss of biodiversity, undetected until now. 
    more » « less
  2. Understanding the role of biotic interactions in shaping natural communities is a long-standing challenge in ecology. It is particularly pertinent to parasite communities sharing the same host communities and individuals, as the interactions among parasites—both competition and facilitation—may have far-reaching implications for parasite transmission and evolution. Aggregated parasite burdens may suggest that infected host individuals are either more prone to infection, or that infection by a parasite species facilitates another, leading to a positive parasite–parasite interaction. However, parasite species may also compete for host resources, leading to the prediction that parasite–parasite associations would be generally negative, especially when parasite species infect the same host tissue, competing for both resources and space. We examine the presence and strength of parasite associations using hierarchical joint species distribution models fitted to data on resident parasite communities sampled on over 1300 small mammal individuals across 22 species and their resident parasite communities. On average, we detected more positive associations between infecting parasite species than negative, with the most negative associations occurring when two parasite species infected the same host tissue, suggesting that parasite species associations may be quantifiable from observational data. Overall, our findings suggest that parasite community prediction at the level of the individual host is possible, and that parasite species associations may be detectable in complex multi-species communities, generating many hypotheses concerning the effect of host community changes on parasite community composition, parasite competition within infected hosts, and the drivers of parasite community assembly and structure. 
    more » « less
  3. null (Ed.)
    Species invasions and range shifts can lead to novel host–parasite communities, but we lack general rules on which new associations are likely to form. While many studies examine parasite sharing among host species, the directionality of transmission is typically overlooked, impeding our ability to derive principles of parasite acquisition. Consequently, we analysed parasite records from the non-native ranges of 11 carnivore and ungulate species. Using boosted regression trees, we modelled parasite acquisition within each zoogeographic realm of a focal host's non-native range, using a suite of predictors characterizing the parasites themselves and the host community in which they live. We found that higher parasite prevalence among established hosts increases the likelihood of acquisition, particularly for generalist parasites. Non-native host species are also more likely to acquire parasites from established host species to which they are closely related; however, the acquisition of several parasite groups is biased to phylogenetically specialist parasites, indicating potential costs of parasite generalism. Statistical models incorporating these features provide an accurate prediction of parasite acquisition, indicating that measurable host and parasite traits can be used to estimate the likelihood of new host–parasite associations forming. This work provides general rules to help anticipate novel host–parasite associations created by climate change and other anthropogenic influences. 
    more » « less