Understanding the role of biotic interactions in shaping natural communities is a long-standing challenge in ecology. It is particularly pertinent to parasite communities sharing the same host communities and individuals, as the interactions among parasites—both competition and facilitation—may have far-reaching implications for parasite transmission and evolution. Aggregated parasite burdens may suggest that infected host individuals are either more prone to infection, or that infection by a parasite species facilitates another, leading to a positive parasite–parasite interaction. However, parasite species may also compete for host resources, leading to the prediction that parasite–parasite associations would be generally negative, especially when parasite species infect the same host tissue, competing for both resources and space. We examine the presence and strength of parasite associations using hierarchical joint species distribution models fitted to data on resident parasite communities sampled on over 1300 small mammal individuals across 22 species and their resident parasite communities. On average, we detected more positive associations between infecting parasite species than negative, with the most negative associations occurring when two parasite species infected the same host tissue, suggesting that parasite species associations may be quantifiable from observational data. Overall, our findings suggest that parasite community prediction at the level of themore »
Parasite‐driven cascades or hydra effects: Susceptibility and foraging depression shape parasite–host–resource interactions
- Award ID(s):
- 1655656
- Publication Date:
- NSF-PAR ID:
- 10384194
- Journal Name:
- Functional Ecology
- Volume:
- 36
- Issue:
- 5
- Page Range or eLocation-ID:
- 1268 to 1278
- ISSN:
- 0269-8463
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Parasites exert strong selective pressure on their hosts, and many hosts can evolve rapidly in response. As such, host-parasite interactions have a special place in the study of contemporary evolution. However, these interactions are often considered in isolation from the ecological contexts in which they occur. Here we review different ways in which the ecological context of host-parasite interactions can modulate their evolutionary outcomes in important and sometimes unexpected ways. Specifically, we highlight how predation, competition, and abiotic factors change the outcome of contemporary evolution for both hosts and parasites. In doing so, we focus on insights gained from the Daphnia-microparasite system. This system has emerged as a model system for understanding the ecology and evolution of host-parasite interactions, and has provided important insights into how ecological context influences contemporary evolution.
-
Species invasions and range shifts can lead to novel host–parasite communities, but we lack general rules on which new associations are likely to form. While many studies examine parasite sharing among host species, the directionality of transmission is typically overlooked, impeding our ability to derive principles of parasite acquisition. Consequently, we analysed parasite records from the non-native ranges of 11 carnivore and ungulate species. Using boosted regression trees, we modelled parasite acquisition within each zoogeographic realm of a focal host's non-native range, using a suite of predictors characterizing the parasites themselves and the host community in which they live. We found that higher parasite prevalence among established hosts increases the likelihood of acquisition, particularly for generalist parasites. Non-native host species are also more likely to acquire parasites from established host species to which they are closely related; however, the acquisition of several parasite groups is biased to phylogenetically specialist parasites, indicating potential costs of parasite generalism. Statistical models incorporating these features provide an accurate prediction of parasite acquisition, indicating that measurable host and parasite traits can be used to estimate the likelihood of new host–parasite associations forming. This work provides general rules to help anticipate novel host–parasite associations created bymore »