null
(Ed.)
Parasite‐driven cascades or hydra effects: Susceptibility and foraging depression shape parasite–host–resource interactions
More Like this
-
-
Abstract Spatial aggregation of environmental or trophically transmitted parasites has the potential to influence host–parasite interactions. The distribution of parasites on hosts is one result of those interactions, and the role of spatial aggregation is unclear. We use a spatially explicit agent‐based model to determine how spatial aggregation of parasites influences the distribution of parasite burdens across a range of parasite densities and host recovery rates. Our model simulates the random movement of hosts across landscapes with varying spatial configurations of areas occupied by environmental parasites, allowing hosts to acquire parasites they encounter and subsequently lose them. When parasites are more spatially aggregated in the environment, the aggregation of parasite burdens on hosts is higher (i.e., more hosts with few parasites, fewer hosts with many parasites), but the effect is less pronounced at high parasite density and fast host recovery rates. In addition, the correlation between individual hosts' final parasite burdens and their cumulative parasite burdens (including lost parasites) is greater at higher levels of spatial parasite aggregation. Our work suggests that fine‐scale spatial patterns of parasites can play a strong role in shaping how hosts are parasitized, particularly when parasite density is low‐to‐moderate and recovery rates are slow.more » « less
-
Understanding the role of biotic interactions in shaping natural communities is a long-standing challenge in ecology. It is particularly pertinent to parasite communities sharing the same host communities and individuals, as the interactions among parasites—both competition and facilitation—may have far-reaching implications for parasite transmission and evolution. Aggregated parasite burdens may suggest that infected host individuals are either more prone to infection, or that infection by a parasite species facilitates another, leading to a positive parasite–parasite interaction. However, parasite species may also compete for host resources, leading to the prediction that parasite–parasite associations would be generally negative, especially when parasite species infect the same host tissue, competing for both resources and space. We examine the presence and strength of parasite associations using hierarchical joint species distribution models fitted to data on resident parasite communities sampled on over 1300 small mammal individuals across 22 species and their resident parasite communities. On average, we detected more positive associations between infecting parasite species than negative, with the most negative associations occurring when two parasite species infected the same host tissue, suggesting that parasite species associations may be quantifiable from observational data. Overall, our findings suggest that parasite community prediction at the level of the individual host is possible, and that parasite species associations may be detectable in complex multi-species communities, generating many hypotheses concerning the effect of host community changes on parasite community composition, parasite competition within infected hosts, and the drivers of parasite community assembly and structure.more » « less
-
null (Ed.)Species invasions and range shifts can lead to novel host–parasite communities, but we lack general rules on which new associations are likely to form. While many studies examine parasite sharing among host species, the directionality of transmission is typically overlooked, impeding our ability to derive principles of parasite acquisition. Consequently, we analysed parasite records from the non-native ranges of 11 carnivore and ungulate species. Using boosted regression trees, we modelled parasite acquisition within each zoogeographic realm of a focal host's non-native range, using a suite of predictors characterizing the parasites themselves and the host community in which they live. We found that higher parasite prevalence among established hosts increases the likelihood of acquisition, particularly for generalist parasites. Non-native host species are also more likely to acquire parasites from established host species to which they are closely related; however, the acquisition of several parasite groups is biased to phylogenetically specialist parasites, indicating potential costs of parasite generalism. Statistical models incorporating these features provide an accurate prediction of parasite acquisition, indicating that measurable host and parasite traits can be used to estimate the likelihood of new host–parasite associations forming. This work provides general rules to help anticipate novel host–parasite associations created by climate change and other anthropogenic influences.more » « less
-
Environmental temperature fundamentally shapes insect physiology, fitness and interactions with parasites. Differential climate warming effects on host versus parasite biology could exacerbate or inhibit parasite transmission, with far-reaching implications for pollination services, biocontrol and human health. Here, we experimentally test how controlled temperatures influence multiple components of host and parasite fitness in monarch butterflies (Danaus plexippus) and their protozoan parasitesOphryocystis elektroscirrha. Using five constant-temperature treatments spanning 18–34°C, we measured monarch development, survival, size, immune function and parasite infection status and intensity. Monarch size and survival declined sharply at the hottest temperature (34°C), as did infection probability, suggesting that extreme heat decreases both host and parasite performance. The lack of infection at 34°C was not due to greater host immunity or faster host development but could instead reflect the thermal limits of parasite invasion and within-host replication. In the context of ongoing climate change, temperature increases above current thermal maxima could reduce the fitness of both monarchs and their parasites, with lower infection rates potentially balancing negative impacts of extreme heat on future monarch abundance and distribution.more » « less
An official website of the United States government

