skip to main content

Title: Florida mangrove saltmarsh reference surface soils
Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (JuncusMore>>
Environmental Data Initiative
Publication Year:
Award ID(s):
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  2. Abstract Extracellular glycosidases in soil, produced by microorganisms, act as major agents for decomposing labile soil organic carbon (e.g., cellulose). Soil extracellular glycosidases are significantly affected by nitrogen (N) fertilization but fertilization effects on spatial distributions of soil glycosidases have not been well addressed. Whether the effects of N fertilization vary with bioenergy crop species also remains unclear. Based on a 3-year fertilization experiment in Middle Tennessee, USA, a total of 288 soil samples in topsoil (0–15 cm) were collected from two 15 m 2 plots under three fertilization treatments in switchgrass (SG: Panicum virgatum L.) and gamagrass (GG: Tripsacum dactyloides L.) using a spatially explicit design. Four glycosidases, α-glucosidase ( AG ), β-glucosidase ( BG ), β-xylosidase ( BX ), cellobiohydrolase ( CBH ), and their sum associated with C acquisition ( C acq ) were quantified. The three fertilization treatments were no N input (NN), low N input (LN: 84 kg N ha −1  year −1 in urea) and high N input (HN: 168 kg N ha −1  year −1 in urea). The descriptive and geostatistical approaches were used to evaluate their central tendency and spatial heterogeneity. Results showed significant interactive effects of N fertilization and crop type on BX such that LN and HNmore »significantly enhanced BX by 14% and 44% in SG, respectively. The significant effect of crop type was identified and glycosidase activities were 15–39% higher in GG than those in SG except AG . Within-plot variances of glycosidases appeared higher in SG than GG but little differed with N fertilization due to large plot-plot variation. Spatial patterns were generally more evident in LN or HN plots than NN plots for BG in SG and CBH in GG. This study suggested that N fertilization elevated central tendency and spatial heterogeneity of glycosidase activities in surficial soil horizons and these effects however varied with crop and enzyme types. Future studies need to focus on specific enzyme in certain bioenergy cropland soil when N fertilization effect is evaluated.« less
  3. To determine whether mangrove soil accretion can keep up with increasing rates of sea level rise, we modeled the theoretical, steady-state (i.e., excluding hurricane impacts) limits to vertical soil accretion in riverine mangrove forests on the southwest coast of Florida, USA. We measured dry bulk density (BD) and loss on ignition (LOI) from mangrove soils collected over a period of 12 years along an estuarine transect of the Shark River. The plotted relationship between BD and LOI was fit to an idealized mixing model equation that provided estimates of organic and inorganic packing densities in the soils. We used these estimates in combination with measures of root production and mineral deposition to calculate their combined contribution to steady-state, vertical soil accretion. On average, the modeled rates of accretion (0.9 to 2.4 mm year−1) were lower than other measured rates of soil accretion at these sites and far less than a recent estimate of sea level rise in south Florida (7.7 mm year−1). To date, however, no evidence of mangrove “drowning” has been observed in this region of the Everglades, indicating that assumptions of the linear accretion model are invalid and/or other contributions to soil accretion (e.g., additional sources of organicmore »matter; feedbacks between physical sedimentation processes and biological responses to short-term environmental change) make up the accretion deficit. This exercise highlights the potential positive impacts of hurricanes on non-steady-state soil accretion that contribute to the persistence of neotropical mangroves in regions of high disturbance frequency such as the Gulf of Mexico and the Caribbean region.« less
  4. The purpose of this study was to assess the effects of charcoal and earthworm presence in contrasting soil types of northern Japan using the biologically based phosphorus (BBP) extraction method, which employs a variety of plant P acquisition strategies. Using soils developed in serpentine and sedimentary parent materials, we tested the interactive effects of Eisenia japonica (Michaelsen) earthworms and 500 kg ha−1 of dwarf bamboo charcoal (Sasa kurilensis (Rupr.) Makino et Shibata) in a microcosm incubation that lasted four weeks. Soils were extracted in parallel after the incubation with the BBP method using 0.01 M CaCl2 (soluble P), 0.01 M citric acid (chelate-extractable P), 0.02 phosphatase enzyme units ml−1 (enzyme-extractable organic P), and 1.0 M HCl (mineral occluded P). Dwarf bamboo charcoal alone contained up to 444 mg total BBP kg−1 prior to application to soil microcosms. Treatment effects in soil microcosms were highest in sedimentary soil types and where charcoal was combined with earthworms (15.97 mg P kg−1 ± SE 1.23 total inorganic BBP). Recalcitrant inorganic P (HCl extracted) in combination treatments yielded the highest single inorganic BBP measure (12.41 mg kg−1 ± SE 1.11). Our findings suggest that charcoal, as a legacy of wildfire, and native earthworm activitymore »may help stimulate cycling of recalcitrant inorganic BBP pools.« less
  5. Abstract
    The Multiple Element Limitation in Northern Hardwood Ecosystems (MELNHE) project studies N, P, and Ca acquisition and limitation of forest productivity through a series of nutrient manipulations in northern hardwood forests. We are monitoring resin N and P availability, N mineralization, and soil enzyme activities. This data set includes soil water content, soil pH, organic horizon mass, soil organic matter, bicarbonate extractable P, extractable Ca, and soil texture data. Additional detail on the MELNHE project, including a datatable of site descriptions and a pdf file with the project description and diagram of plot configuration can be found in this data package: This work is a contribution of the Hubbard Brook Ecosystem Study. Hubbard Brook is part of the LTER network, which is supported by the US National Science Foundation. The Hubbard Brook Experimental Forest is operated and maintained by the US Department of Agriculture, Forest Service, Northern Research Station. These data have been described and analyzed in the following publications: Shan S, Devens H, Fahey TJ, Yanai RD, Fisk MC. 2022. Fine root growth increases in response to nitrogen addition in phosphorus-limited northern hardwood forests. Ecosystems. Goswami S, Fisk MC, Vadeboncoeur MA, Johnston M, Yanai RD, andMore>>