skip to main content

Title: Social Brain Energetics: Ergonomic Efficiency, Neurometabolic Scaling, and Metabolic Polyphenism in Ants
Abstract

Metabolism, a metric of the energy cost of behavior, plays a significant role in social evolution. Body size and metabolic scaling are coupled, and a socioecological pattern of increased body size is associated with dietary change and the formation of larger and more complex groups. These consequences of the adaptive radiation of animal societies beg questions concerning energy expenses, a substantial portion of which may involve the metabolic rates of brains that process social information. Brain size scales with body size, but little is understood about brain metabolic scaling. Social insects such as ants show wide variation in worker body size and morphology that correlates with brain size, structure, and worker task performance, which is dependent on sensory inputs and information-processing ability to generate behavior. Elevated production and maintenance costs in workers may impose energetic constraints on body size and brain size that are reflected in patterns of metabolic scaling. Models of brain evolution do not clearly predict patterns of brain metabolic scaling, nor do they specify its relationship to task performance and worker ergonomic efficiency, two key elements of social evolution in ants. Brain metabolic rate is rarely recorded and, therefore, the conditions under which brain metabolism influences more » the evolution of brain size are unclear. We propose that studies of morphological evolution, colony social organization, and worker ergonomic efficiency should be integrated with analyses of species-specific patterns of brain metabolic scaling to advance our understanding of brain evolution in ants.

« less
Authors:
;
Publication Date:
NSF-PAR ID:
10384352
Journal Name:
Integrative and Comparative Biology
Volume:
62
Issue:
5
Page Range or eLocation-ID:
p. 1471-1478
ISSN:
1540-7063
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A holistic understanding of superorganism biology requires study of colony sociometry, or the quantitative relationships among growth, nest architecture, morphology, and behavior. For ant colonies that obligately nest within plant hosts, their sociometry is likely intertwined with the plant, which has implications for the evolution, strength, and stability of the mutualism. In theAzteca-Cecropiamutualism, plants provide ants with food rewards and hollow stems for nesting in return for protection from herbivores. Several interesting questions arise when considering ant-plant sociometry: are colony growth and plant growth synchronized? How do colonies distribute themselves within the stem of their host plant? How do plant traits influence worker morphology? How is collective personality related to tree structure, nest organization, and worker morphology? To address these questions, we investigated patterns within and relationships among five major sociometric categories of colonies in the field – plant traits, colony size, nest organization, worker morphology, and collective personality. We found that colony sociometry was intimately intertwined with host plant traits. Colony and plant growth rates were synchronized, suggesting that positive feedback between plant and colony growth stabilizes the mutualism. The colony’s distribution inside the host tree tended to follow leaf growth, with most workers, brood, and the queenmore »in the top half of the tree. Worker morphology correlated with plant size instead of colony size or age, which suggests that plant traits influence worker development. Colony personality was independent of colony distribution and tree structure but may correlate with worker size such that colonies with smaller, less variable workers had more aggressive personalities. This study provides insights into how ant-plant structural relationships may contribute to plant protection and the strength of mutualisms.

    « less
  2. Human brain size nearly quadrupled in the six million years since Homo last shared a common ancestor with chimpanzees, but human brains are thought to have decreased in volume since the end of the last Ice Age. The timing and reason for this decrease is enigmatic. Here we use change-point analysis to estimate the timing of changes in the rate of hominin brain evolution. We find that hominin brains experienced positive rate changes at 2.1 and 1.5 million years ago, coincident with the early evolution of Homo and technological innovations evident in the archeological record. But we also find that human brain size reduction was surprisingly recent, occurring in the last 3,000 years. Our dating does not support hypotheses concerning brain size reduction as a by-product of body size reduction, a result of a shift to an agricultural diet, or a consequence of self-domestication. We suggest our analysis supports the hypothesis that the recent decrease in brain size may instead result from the externalization of knowledge and advantages of group-level decision-making due in part to the advent of social systems of distributed cognition and the storage and sharing of information. Humans live in social groups in which multiple brains contributemore »to the emergence of collective intelligence. Although difficult to study in the deep history of Homo , the impacts of group size, social organization, collective intelligence and other potential selective forces on brain evolution can be elucidated using ants as models. The remarkable ecological diversity of ants and their species richness encompasses forms convergent in aspects of human sociality, including large group size, agrarian life histories, division of labor, and collective cognition. Ants provide a wide range of social systems to generate and test hypotheses concerning brain size enlargement or reduction and aid in interpreting patterns of brain evolution identified in humans. Although humans and ants represent very different routes in social and cognitive evolution, the insights ants offer can broadly inform us of the selective forces that influence brain size.« less
  3. Abstract

    Larger animals studied during ontogeny, across populations, or across species, usually have lower mass-specific metabolic rates than smaller animals (hypometric scaling). This pattern is usually observed regardless of physiological state (e.g., basal, resting, field, and maximally active). The scaling of metabolism is usually highly correlated with the scaling of many life-history traits, behaviors, physiological variables, and cellular/molecular properties, making determination of the causation of this pattern challenging. For across-species comparisons of resting and locomoting animals (but less so for across populations or during ontogeny), the mechanisms at the physiological and cellular level are becoming clear. Lower mass-specific metabolic rates of larger species at rest are due to (a) lower contents of expensive tissues (brains, liver, and kidneys), and (b) slower ion leak across membranes at least partially due to membrane composition, with lower ion pump ATPase activities. Lower mass-specific costs of larger species during locomotion are due to lower costs for lower-frequency muscle activity, with slower myosin and Ca++ ATPase activities, and likely more elastic energy storage. The evolutionary explanation(s) for hypometric scaling remain(s) highly controversial. One subset of evolutionary hypotheses relies on constraints on larger animals due to changes in geometry with size; for example, lower surface-to-volume ratiosmore »of exchange surfaces may constrain nutrient or heat exchange, or lower cross-sectional areas of muscles and tendons relative to body mass ratios would make larger animals more fragile without compensation. Another subset of hypotheses suggests that hypometric scaling arises from biotic interactions and correlated selection, with larger animals experiencing less selection for mass-specific growth or neurolocomotor performance. An additional third type of explanation comes from population genetics. Larger animals with their lower effective population sizes and subsequent less effective selection relative to drift may have more deleterious mutations, reducing maximal performance and metabolic rates. Resolving the evolutionary explanation for the hypometric scaling of metabolism and associated variables is a major challenge for organismal and evolutionary biology. To aid progress, we identify some variation in terminology use that has impeded cross-field conversations on scaling. We also suggest that promising directions for the field to move forward include (1) studies examining the linkages between ontogenetic, population-level, and cross-species allometries; (2) studies linking scaling to ecological or phylogenetic context; (3) studies that consider multiple, possibly interacting hypotheses; and (4) obtaining better field data for metabolic rates and the life history correlates of metabolic rate such as lifespan, growth rate, and reproduction.

    « less
  4. Body size covaries with population dynamics across life’s domains. Metabolism may impose fundamental constraints on the coevolution of size and demography, but experimental tests of the causal links remain elusive. We leverage a 60,000-generation experiment in which Escherichia coli populations evolved larger cells to examine intraspecific metabolic scaling and correlations with demographic parameters. Over the course of their evolution, the cells have roughly doubled in size relative to their ancestors. These larger cells have metabolic rates that are absolutely higher, but relative to their size, they are lower. Metabolic theory successfully predicted the relations between size, metabolism, and maximum population density, including support for Damuth’s law of energy equivalence, such that populations of larger cells achieved lower maximum densities but higher maximum biomasses than populations of smaller cells. The scaling of metabolism with cell size thus predicted the scaling of size with maximum population density. In stark contrast to standard theory, however, populations of larger cells grew faster than those of smaller cells, contradicting the fundamental and intuitive assumption that the costs of building new individuals should scale directly with their size. The finding that the costs of production can be decoupled from size necessitates a reevaluation of the evolutionarymore »drivers and ecological consequences of biological size more generally.« less
  5. Abstract

    Social parasites exploit the brood care behavior of their hosts to raise their own offspring. Social parasites are common among eusocial Hymenoptera and exhibit a wide range of distinct life history traits in ants, bees, and wasps. In ants, obligate inquiline social parasites are workerless (or nearly-so) species that engage in lifelong interactions with their hosts, taking advantage of the existing host worker forces to reproduce and exploit host colonies’ resources. Inquiline social parasites are phylogenetically diverse with approximately 100 known species that evolved at least 40 times independently in ants. Importantly, ant inquilines tend to be closely related to their hosts, an observation referred to as ‘Emery’s Rule’. Polygyny, the presence of multiple egg-laying queens, was repeatedly suggested to be associated with the origin of inquiline social parasitism, either by providing the opportunity for reproductive cheating, thereby facilitating the origin of social parasite species, and/or by making polygynous species more vulnerable to social parasitism via the acceptance of additional egg-laying queens in their colonies. Although the association between host polygyny and the evolution of social parasitism has been repeatedly discussed in the literature, it has not been statistically tested in a phylogenetic framework across the ants. Here, wemore »conduct a meta-analysis of ant social structure and social parasitism, testing for an association between polygyny and inquiline social parasitism with a phylogenetic correction for independent evolutionary events. We find an imperfect but significant over-representation of polygynous species among hosts of inquiline social parasites, suggesting that while polygyny is not required for the maintenance of inquiline social parasitism, it (or factors associated with it) may favor the origin of socially parasitic behavior. Our results are consistent with an intra-specific origin model for the evolution of inquiline social parasites by sympatric speciation but cannot exclude the alternative, inter-specific allopatric speciation model. The diversity of social parasite behaviors and host colony structures further supports the notion that inquiline social parasites evolved in parallel across unrelated ant genera in the formicoid clade via independent evolutionary pathways.

    « less