skip to main content

Title: Mudskippers Modulate their Locomotor Kinematics when Moving on Deformable and Inclined Substrates

Many ecological factors influence animal movement, including properties of the media that they move on or through. Animals moving in terrestrial environments encounter conditions that can be challenging for generating propulsion and maintaining stability, such as inclines and deformable substrates that can cause slipping and sinking. In response, tetrapods tend to adopt a more crouched posture and lower their center of mass on inclines and increase the surface area of contact on deformable substrates, such as sand. Many amphibious fishes encounter the same challenges when moving on land, but how these finned animals modulate their locomotion with respect to different environmental conditions and how these modifications compare with those seen within tetrapods is relatively understudied. Mudskippers (Gobiidae: Oxudercinae) are a particularly noteworthy group of amphibious fishes in this context given that they navigate a wide range of environmental conditions, from flat mud to inclined mangrove trees. They use a unique form of terrestrial locomotion called “crutching,” where their pectoral fins synchronously lift and vault the front half of the body forward before landing on their pelvic fins, while the lower half of the body and tail are kept straight. However, recent work has shown that mudskippers modify some aspects more » of their locomotion when crutching on deformable surfaces, particularly those at an incline. For example, on inclined dry sand, mudskippers bent their bodies laterally and curled and extended their tails to potentially act as a secondary propulsor and/or anti-slip device. In order to gain a more comprehensive understanding of the functional diversity and context-dependency of mudskipper crutching, we compared their kinematics on different combinations of substrate types (solid, mud, and dry sand) and inclines (0°, 10°, and 20°). In addition to increasing lateral bending on deformable and inclined substrates, we found that mudskippers increased the relative contact time and contact area of their paired fins, while becoming more crouched, which are responses comparable to those seen in tetrapods and other amphibious fish. Mudskippers on these substrates also exhibited previously undocumented behaviors, such as extending and adpressing the distal portions of their pectoral fins more anteriorly, dorsoventrally bending their trunk, “belly-flopping” on sand, and “gripping” the mud substrate with their pectoral fin rays. Our study highlights potential compensatory mechanisms shared among vertebrates in terrestrial environments while also illustrating that locomotor flexibility and even novelty can emerge when animals are challenged with environmental variation.

« less
Publication Date:
Journal Name:
Integrative and Comparative Biology
Page Range or eLocation-ID:
p. 1335-1356
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Laboratory investigations have provided important insight into the functional underpinnings of primate locomotor performance; however, it is unclear to what extent gait patterns in the laboratory reflect those of primates moving in natural settings. We filmed quadrupedal loco-motor activity in eight platyrrhine species at the Tiputini Biodiversity Station, Ecuador, and three additional platyrrhine species at La Suerte Biological Field Station, Costa Rica, and also quantified the diameter and orientation of locomotor substrates using remote sensors (N = 1,233 strides). We compared overall arboreal quadrupedal gait kinematic patterns in free-ranging individuals to those of laboratory platyrrhine congenerics. As expected, gait kinematics of free-ranging individuals were more variable than laboratory counterparts. Within the free-ranging dataset, Ateles and Alouatta increased limb phase on inclines (p=0.04; p=0.002, respectively), Lagothrix increased duty factors on inclines (p=0.002), Cebus increased duty factors on declines (p=0.02), and both Saimiri and Saguinus displayed an inverse relationship between limb phase and substrate diameter (p=0.05; p=0.03, respectively). This study confirms the preference for diagonal sequence gaits in free-ranging primates (i.e., 87.9% of all recorded symmetrical strides) and that in both settings primates tend to adjust gait patterns to promote security through longer contact times on non-horizontal substrates and increased limb phasemore »on inclined substrates. We show that laboratory and field investigations of primate locomotion yield consistent patterns but that field studies can capture additional aspects of gait variability and flexibility in response to the increased substrate complexity of natural environments.« less
  2. While terrestrial locomotors often contend with permanently deformable substrates like sand, soil, and mud, principles of motion on such materials are lacking. We study the desert-specialist shovel-nosed snake traversing a model sand and find body inertia is negligible despite rapid transit and speed dependent granular reaction forces. New surface resistive force theory (RFT) calculation reveals how wave shape in these snakes minimizes material memory effects and optimizes escape performance given physiological power limitations. RFT explains the morphology and waveform-dependent performance of a diversity of non-sand-specialist snakes but overestimates the capability of those snakes which suffer high lateral slipping of the body. Robophysical experiments recapitulate aspects of these failure-prone snakes and elucidate how re-encountering previously deformed material hinders performance. This study reveals how memory effects stymied the locomotion of a diversity of snakes in our previous studies (Marvi et al., 2014) and indicates avenues to improve all-terrain robots.
  3. Abstract Locomotion on the narrow and compliant supports of the arboreal environment is inherently precarious. Previous studies have identified a host of morphological and behavioral specializations in arboreal animals broadly thought to promote stability when on precarious substrates. Less well-studied is the role of the tail in maintaining balance. However, prior anatomical studies have found that arboreal taxa frequently have longer tails for their body size than their terrestrial counterparts, and prior laboratory studies of tail kinematics and the effects of tail reduction in focal taxa have broadly supported the hypothesis that the tail is functionally important for maintaining balance on narrow and mobile substrates. In this set of studies, we extend this work in two ways. First, we used a laboratory dataset on three-dimensional segmental kinematics and tail inertial properties in squirrel monkeys (Saimiri boliviensis) to investigate how tail angular momentum is modulated during steady-state locomotion on narrow supports. In the second study, we used a quantitative dataset on quadrupedal locomotion in wild platyrrhine monkeys to investigate how free-ranging arboreal animals adjust tail movements in response to substrate variation, focusing on kinematic measures validated in prior laboratory studies of tail mechanics (including the laboratory data presented). Our laboratory resultsmore »show that S. boliviensis significantly increase average tail angular momentum magnitudes and amplitudes on narrow supports, and primarily regulate that momentum by adjusting the linear and angular velocity of the tail (rather than via changes in tail posture per se). We build on these findings in our second study by showing that wild platyrrhines responded to the precarity of narrow and mobile substrates by extending the tail and exaggerating tail displacements, providing ecological validity to the laboratory studies of tail mechanics presented here and elsewhere. In conclusion, our data support the hypothesis that the long and mobile tails of arboreal animals serve a biological role of enhancing stability when moving quadrupedally over narrow and mobile substrates. Tail angular momentum could be used to cancel out the angular momentum generated by other parts of the body during steady-state locomotion, thereby reducing whole-body angular momentum and promoting stability, and could also be used to mitigate the effects of destabilizing torques about the support should the animals encounter large, unexpected perturbations. Overall, these studies suggest that long and mobile tails should be considered among the fundamental suite of adaptations promoting safe and efficient arboreal locomotion.« less
  4. Abstract

    The epaulette shark, Hemiscyllium ocellatum, is a small, reef-dwelling, benthic shark that—using its paired fins—can walk, both in and out of water. Within the reef flats, this species experiences short periods of elevated CO2 and hypoxia as well as fluctuating temperatures as reef flats become isolated with the outgoing tide. Past studies have shown that this species is robust (i.e., respiratory and metabolic performance, behavior) to climate change-relevant elevated CO2 levels as well as hypoxia and anoxia tolerant. However, epaulette shark embryos reared under ocean warming conditions hatch earlier and smaller, with altered patterns and coloration, and with higher metabolic costs than their current-day counterparts. Findings to date suggest that this species has adaptations to tolerate some, but perhaps not all, of the challenging conditions predicted for the 21st century. As such, the epaulette shark is emerging as a model system to understand vertebrate physiology in changing oceans. Yet, few studies have investigated the kinematics of walking and swimming, which may be vital to their biological fitness, considering their habitat and propensity for challenging environmental conditions. Given that neonates retain embryonic nutrition via an internalized yolk sac, resulting in a bulbous abdomen, while juveniles actively forage for worms, crustaceans,more »and small fishes, we hypothesized that difference in body shape over early ontogeny would affect locomotor performance. To test this, we examined neonate and juvenile locomotor kinematics during the three aquatic gaits they utilize—slow-to-medium walking, fast walking, and swimming—using 13 anatomical landmarks along the fins, girdles, and body midline. We found that differences in body shape did not alter kinematics between neonates and juveniles. Overall velocity, fin rotation, axial bending, and tail beat frequency and amplitude were consistent between early life stages. Data suggest that the locomotor kinematics are maintained between neonate and juvenile epaulette sharks, even as their feeding strategy changes. Studying epaulette shark locomotion allows us to understand this—and perhaps related—species’ ability to move within and away from challenging conditions in their habitats. Such locomotor traits may not only be key to survival, in general, as a small, benthic mesopredator (i.e., movements required to maneuver into small reef crevices to avoid aerial and aquatic predators), but also be related to their sustained physiological performance under challenging environmental conditions, including those associated with climate change—a topic worthy of future investigation.

    « less
  5. ABSTRACT Balitorid loaches are a family of fishes that exhibit morphological adaptations to living in fast flowing water, including an enlarged sacral rib that creates a ‘hip’-like skeletal connection between the pelvis and the axial skeleton. The presence of this sacral rib, the robustness of which varies across the family, is hypothesized to facilitate terrestrial locomotion seen in the family. Terrestrial locomotion in balitorids is unlike that of any known fish: the locomotion resembles that of terrestrial tetrapods. Emergence and convergence of terrestrial locomotion from water to land has been studied in fossils; however, studying balitorid walking provides a present-day natural laboratory to examine the convergent evolution of walking movements. We tested the hypothesis that balitorid species with more robust connections between the pelvic and axial skeleton (M3 morphotype) are more effective at walking than species with reduced connectivity (M1 morphotype). We predicted that robust connections would facilitate travel per step and increase mass support during movement. We collected high-speed video of walking in seven balitorid species to analyze kinematic variables. The connection between internal anatomy and locomotion on land are revealed herein with digitized video analysis, μCT scans, and in the context of the phylogenetic history of this familymore »of fishes. Our species sampling covered the extremes of previously identified sacral rib morphotypes, M1 and M3. Although we hypothesized the robustness of the sacral rib to have a strong influence on walking performance, there was not a large reduction in walking ability in the species with the least modified rib (M1). Instead, walking kinematics varied between the two balitorid subfamilies with a generally more ‘walk-like’ behavior in the Balitorinae and more ‘swim-like’ behavior in the Homalopteroidinae. The type of terrestrial locomotion displayed in balitorids is unique among living fishes and aids in our understanding of the extent to which a sacral connection facilitates terrestrial walking.« less