skip to main content

Title: Rossby wave second harmonic generation observed in the middle atmosphere

Second harmonic generation is the lowest-order wave-wave nonlinear interaction occurring in, e.g., optical, radio, and magnetohydrodynamic systems. As a prototype behavior of waves, second harmonic generation is used broadly, e.g., for doubling Laser frequency. Second harmonic generation of Rossby waves has long been believed to be a mechanism of high-frequency Rossby wave generation via cascade from low-frequency waves. Here, we report the observation of a Rossby wave second harmonic generation event in the atmosphere. We diagnose signatures of two transient waves at periods of 16 and 8 days in the terrestrial middle atmosphere, using meteor-radar wind observations over the European and Asian sectors during winter 2018–2019. Their temporal evolution, frequency and wavenumber relations, and phase couplings revealed by bicoherence and biphase analyses demonstrate that the 16-day signature is an atmospheric manifestation of a Rossby wave normal mode, and its second harmonic generation gives rise to the 8-day signature. Our finding confirms the theoretically-anticipated Rossby wave nonlinearity.

Publication Date:
Journal Name:
Nature Communications
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We study the adjustment of the tropical atmosphere to localized surface heating using a Lagrangian atmospheric model (LAM) that simulates a realistic Madden–Julian oscillation (MJO)—the dominant, eastward-propagating mode of tropical intraseasonal variability modulating atmospheric convection. Idealized warm sea surface temperature (SST) anomalies of different aspect ratios and magnitudes are imposed in the equatorial Indian Ocean during MJO-neutral conditions and then maintained for 15 days. The experiments then continue for several more months. Throughout these experiments, we observe a robust generation of an MJO event, evident in precipitation, velocity, temperature, and moisture fields, which becomes a key element of atmospheric adjustment along with the expected Kelvin and Rossby waves. The MJO circulation pattern gradually builds up during the first week, and then starts to propagate eastward at a speed of 5–7 m s−1. The upper-level quadrupole circulation characteristic of the MJO becomes evident around day 14, with two anticyclonic gyres generated by the Gill-type response to convective heating and two cyclonic gyres forced by the excited Kelvin waves and extratropical Rossby wave trains. A moisture budget analysis shows that the eastward propagation of the MJO is controlled largely by the anomalous advection of moisture and by the residual between anomalousmore »moisture accumulation due to converging winds and precipitation. The initial MJO event is followed by successive secondary events, maintaining the MJO for several more cycles. Thus, this study highlights the fundamental role that the MJO can play in the adjustment of the moist equatorial atmosphere to localized surface heating.

    « less
  2. Abstract

    Sound waves generated by erupting volcanoes can be used to infer important source dynamics, yet acoustic source‐time functions may be distorted during propagation, even at local recording distances (15 km). The resulting uncertainty in source estimates can be reduced by improving constraints on propagation effects. We aim to quantify potential distortions caused by wave steepening during nonlinear propagation, with the aim of improving the accuracy of volcano‐acoustic source predictions. We hypothesize that wave steepening causes spectral energy transfer away from the dominant source frequency. To test this, we apply a previously developed single‐point, frequency domain, quadspectral density‐based nonlinearity indicator to 30 acoustic signals from Vulcanian explosion events at Sakurajima Volcano, Japan, in an 8‐day data set collected by five infrasound stations in 2013 with 2.3‐ to 6.2‐km range. We model these results with a 2‐D axisymmetric finite‐difference method that includes rigid topography, wind, and nonlinear propagation. Simulation results with flat ground indicate that wave steepening causes up to2 dB (1% of source level) of cumulative upward spectral energy transfer for Sakurajima amplitudes. Correction for nonlinear propagation may therefore provide a valuable second‐order improvement in accuracy for source parameter estimates. However, simulations with wind and topography introduce variationsmore »in the indicator spectra on order of a few decibels. Nonrandom phase relationships generated during propagation or at the source may be misinterpreted as nonlinear spectral energy transfer. The nonlinearity indicator is therefore best suited to small source‐receiver distances (e.g.,2 km) and volcanoes with simple sources (e.g., gas‐rich strombolian explosions) and topography.

    « less
  3. Abstract

    We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wave-driven energetic electron precipitation using data collected by the energetic electron detector on the Electron Losses and Fields InvestigatioN (ELFIN) mission, two polar-orbiting low-altitude spinning CubeSats, measuring 50-5000 keV electrons with good pitch-angle and energy resolution. EMIC wave-driven precipitation exhibits a distinct signature in energy-spectrograms of the precipitating-to-trapped flux ratio: peaks at >0.5 MeV which are abrupt (bursty) (lasting ∼17 s, or$\Delta L\sim 0.56$ΔL0.56) with significant substructure (occasionally down to sub-second timescale). We attribute the bursty nature of the precipitation to the spatial extent and structuredness of the wave field at the equator. Multiple ELFIN passes over the same MLT sector allow us to study the spatial and temporal evolution of the EMIC wave - electron interaction region. Case studies employing conjugate ground-based or equatorial observations of the EMIC waves reveal that the energy of moderate and strong precipitation at ELFIN approximately agrees with theoretical expectations for cyclotron resonant interactions in a cold plasma. Using multiple years of ELFIN data uniformly distributed in local time, we assemble a statistical database of ∼50 events of strong EMIC wave-driven precipitation. Most reside at$L\sim 5-7$L57at dusk, while a smaller subset exists at$L\sim 8-12$L812at post-midnight. The energiesmore »of the peak-precipitation ratio and of the half-peak precipitation ratio (our proxy for the minimum resonance energy) exhibit an$L$L-shell dependence in good agreement with theoretical estimates based on prior statistical observations of EMIC wave power spectra. The precipitation ratio’s spectral shape for the most intense events has an exponential falloff away from the peak (i.e., on either side of$\sim 1.45$1.45MeV). It too agrees well with quasi-linear diffusion theory based on prior statistics of wave spectra. It should be noted though that this diffusive treatment likely includes effects from nonlinear resonant interactions (especially at high energies) and nonresonant effects from sharp wave packet edges (at low energies). Sub-MeV electron precipitation observed concurrently with strong EMIC wave-driven >1 MeV precipitation has a spectral shape that is consistent with efficient pitch-angle scattering down to ∼ 200-300 keV by much less intense higher frequency EMIC waves at dusk (where such waves are most frequent). At ∼100 keV, whistler-mode chorus may be implicated in concurrent precipitation. These results confirm the critical role of EMIC waves in driving relativistic electron losses. Nonlinear effects may abound and require further investigation.

    « less
  4. Abstract

    Solid-state electrolytes overcome many challenges of present-day lithium ion batteries, such as safety hazards and dendrite formation1,2. However, detailed understanding of the involved lithium dynamics is missing due to a lack of in operando measurements with chemical and interfacial specificity. Here we investigate a prototypical solid-state electrolyte using linear and nonlinear extreme-ultraviolet spectroscopies. Leveraging the surface sensitivity of extreme-ultraviolet-second-harmonic-generation spectroscopy, we obtained a direct spectral signature of surface lithium ions, showing a distinct blueshift relative to bulk absorption spectra. First-principles simulations attributed the shift to transitions from the lithium 1 sstate to hybridized Li-s/Ti-dorbitals at the surface. Our calculations further suggest a reduction in lithium interfacial mobility due to suppressed low-frequency rattling modes, which is the fundamental origin of the large interfacial resistance in this material. Our findings pave the way for new optimization strategies to develop these electrochemical devices via interfacial engineering of lithium ions.

  5. We describe the high-frequency variability in the North Icelandic Jet (NIJ) on the Iceland Slope using data from the densely instrumented Kögur mooring array deployed upstream of the Denmark Strait sill from September 2011 to July 2012. Significant sub-8-day variability is ubiquitous in all moorings from the Iceland slope with a dominant period of 3.6 days. We attribute this variability to topographic Rossby waves on the Iceland slope with a wavelength of 62 ± 3 km and a phase velocity of 17.3 ± 0.8 km/day−1 directed downslope (−9◦ relative to true-north). We test the theoretical dispersion relation for these waves against our observations and find good agreement between the predicted and measured direction of phase propagation. We additionally calculate a theoretical group velocity of 36 km day−1 directed almost directly up-slope (106◦ relative to true-north) that agrees well with the propagation speed and direction of observed energy pulses. We use an inverse wave tracing model to show that this wave energy is generated locally, offshore of the array, and does not emanate from the upstream or downstream directions along the Iceland slope. It is hypothesized that either the meandering Separated East Greenland Current located seaward of the NIJ or intermittentmore »aspiration of dense water into the Denmark Strait Overflow are the drivers of the topographic waves.« less