This work examines a severe weather event that took place over central Argentina on 11 December 2018. The evolution of the storm from its initiation, rapid organization into a supercell, and eventual decay was analyzed with high‐temporal resolution observations. This work provides insight into the spatio‐temporal co‐evolution of storm kinematics (updraft area and lifespan), cloud‐top cooling rates, and lightning production that led to severe weather. The analyzed storm presented two convective periods with associated severe weather. An overall decrease in cloud‐top local minima IR brightness temperature (MinIR) and lightning jump (LJ) preceded both periods. LJs provided the highest lead time to the occurrence of severe weather, with the ground‐based lightning networks providing the maximum warning time of around 30 min. Lightning flash counts from the Geostationary Lightning Mapper (GLM) were underestimated when compared to detections from ground‐based lightning networks. Among the possible reasons for GLM's lower detection efficiency were an optically dense medium located above lightning sources and the occurrence of flashes smaller than GLM's footprint. The minimum MinIR provided the shorter warning time to severe weather occurrence. However, the secondary minima in MinIR that preceded the absolute minima improved this warning time by more than 10 min. Trends in MinIR for time scales shorter than 6 min revealed shorter cycles of fast cooling and warming, which provided information about the lifecycle of updrafts within the storm. The advantages of using observations with high‐temporal resolution to analyze the evolution and intensity of convective storms are discussed.
In this study, a new lightning data assimilation (LDA) scheme using Geostationary Lightning Mapper (GLM) flash extent density (FED) is developed and implemented in the National Severe Storms Laboratory Warn‐on‐Forecast System (WoFS). The new LDA scheme first assigns a pseudo relative humidity between the cloud base and a specific layer based on the FED value. Then at each model layer, the pseudo relative humidity is converted to pseudo dewpoint temperature according to the corresponding air temperature. Some sensitivity experiments are performed to investigate how to assign and use GLM/FED in an optimum way. The impact of assimilating this pseudo dewpoint temperature on a short‐term severe weather forecast is preliminarily assessed in this proof‐of‐concept study. A high‐impact weather event in Kansas on 24 May 2021 is used to evaluate the performance of the new scheme on analyses and subsequent short‐term forecasts. The results show that the assimilation of additional FED‐based dewpoint temperature observations along with radar, satellite radiance, and cloud water can improve short‐term (3‐hr) forecast skill in terms of quantitative and qualitative verifications against the observations. The improvement is primarily due to the direct and indirect adjustment of dynamic and thermodynamic conditions through the LDA process. More specifically, the assimilation of FED‐based dewpoint temperature, in addition to the other observations currently used in WoFS, tends to enhance the ingredients required for thunderstorm formation, namely moisture, instability, and lifting mechanism.
more » « less- PAR ID:
- 10384398
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Earth and Space Science
- Volume:
- 9
- Issue:
- 12
- ISSN:
- 2333-5084
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract A primary goal of the National Oceanic and Atmospheric Administration Warn-on-Forecast (WoF) project is to provide rapidly updating probabilistic guidance to human forecasters for short-term (e.g., 0–3 h) severe weather forecasts. Postprocessing is required to maximize the usefulness of probabilistic guidance from an ensemble of convection-allowing model forecasts. Machine learning (ML) models have become popular methods for postprocessing severe weather guidance since they can leverage numerous variables to discover useful patterns in complex datasets. In this study, we develop and evaluate a series of ML models to produce calibrated, probabilistic severe weather guidance from WoF System (WoFS) output. Our dataset includes WoFS ensemble forecasts available every 5 min out to 150 min of lead time from the 2017–19 NOAA Hazardous Weather Testbed Spring Forecasting Experiments (81 dates). Using a novel ensemble storm-track identification method, we extracted three sets of predictors from the WoFS forecasts: intrastorm state variables, near-storm environment variables, and morphological attributes of the ensemble storm tracks. We then trained random forests, gradient-boosted trees, and logistic regression algorithms to predict which WoFS 30-min ensemble storm tracks will overlap a tornado, severe hail, and/or severe wind report. To provide rigorous baselines against which to evaluate the skill of the ML models, we extracted the ensemble probabilities of hazard-relevant WoFS variables exceeding tuned thresholds from each ensemble storm track. The three ML algorithms discriminated well for all three hazards and produced more reliable probabilities than the baseline predictions. Overall, the results suggest that ML-based postprocessing of dynamical ensemble output can improve short-term, storm-scale severe weather probabilistic guidance.more » « less
-
Forecasts of tropical cyclone (TC) tornadoes are less skillful than their non‐TC counterparts at all lead times. The development of a convection‐allowing regional ensemble, known as the Warn‐on‐Forecast System (WoFS), may help improve short‐fused TC tornado forecasts. As a first step, this study investigates the fidelity of convective‐scale kinematic and thermodynamic environments to a preliminary set of soundings from WoFS forecasts for comparison with radiosondes for selected 2020 landfalling TCs. Our study shows reasonable agreement between TC convective‐scale kinematic environments in WoFS versus observed soundings at all forecast lead times. Nonetheless, WoFS is biased toward weaker than observed TC‐relative radial winds, and stronger than observed near‐surface tangential winds with weaker winds aloft, during the forecast. Analysis of storm‐relative helicity (SRH) shows that WoFS underestimates extreme observed values. Convective‐scale thermodynamic environments are well simulated for both temperature and dewpoint at all lead times. However, WoFS is biased moister with steeper lapse rates compared to observations during the forecast. Both CAPE and, to a lesser extent, 0–3‐km CAPE distributions are narrower in WoFS than in radiosondes, with an underestimation of higher CAPE values. Together, these results suggest that WoFS may have utility for forecasting convective‐scale environments in landfalling TCs with lead times of several hours.more » « less
-
Abstract The differential reflectivity (
Z DR) column is a notable polarimetric signature related to updrafts in deep moist convection. In this study, pseudo–water vapor (qυ ) observations are retrieved from observedZ DRcolumns under the assumption that humidity is saturated within the convection whereZ DRcolumns are detected, and are then assimilated within the 3DVar framework. The impacts of assimilating pseudo-qυ observations fromZ DRcolumns on short-term severe weather prediction are first evaluated for a squall-line case. Radar data analysis indicates that theZ DRcolumns are mainly located on the inflow side of the high-reflectivity region. Assimilation of the pseudo-qυ observations leads to an enhancement ofqυ within the convection, while concurrently reducing humidity in no-rain areas. Sensitivity experiments indicate that a tuned smaller observation error and a shorter horizontal decorrelation scale are optimal for a better assimilation of pseudo-qυ fromZ DRcolumns, resulting in more stable rain rates during short-term forecasts. Additionally, a 15-min cycling assimilation frequency yields the best performance, providing the most accurate reflectivity forecast in terms of both location and intensity. Analysis of thermodynamic fields reveal that assimilatingZ DRcolumns provides more favorable initial conditions for sustaining convection, including sustainable moisture condition, a strong cold pool, and divergent winds near the surface, consequently enhancing reflectivity and precipitation. With the optimal configuration determined from the sensitivity tests, a quantitative evaluation further demonstrates that assimilating the pseudo-qυ observations fromZ DRcolumns using the 3DVar method can improve the 0–3-h reflectivity and accumulated precipitation predictions of convective storms. -
Abstract The assimilation of radar reflectivity requires an accurate and efficient forward operator that links the model state variables to radar observations. In this study, newly developed parameterized forward operators (PFO) for radar reflectivity with a new continuous melting model are implemented to assimilate observed radar data. To assess the impact of the novel parameterized reflectivity forward operators on convective storm analysis and forecasting, two distinct sets of cycled assimilation and forecast experiments are conducted. One set of experiments (ExpRFO) uses a conventional Rayleigh‐scattering‐approximation‐based forward operator (RFO) with hydrometeor classification, while the other uses the PFO (ExpPFO_New) for radar reflectivity with a new continuous melting model. Eight high‐impact severe convective weather events from the Hazardous Weather Testbed (HWT) 2019 Spring Experiments are selected for this study. The analysis and forecast results are first examined in detail for a classic tornadic supercell case on 24 May 2019, with the potential benefits provided by the PFO then evaluated for all eight cases. It is demonstrated that ExpPFO_New provides more robust results in terms of improving the short‐term severe weather forecasts. Compared to ExpRFO, ExpPFO_New better reproduces all observed supercells in the analysis field, yields a more continuous and reasonable reflectivity distribution near the melting layer, and improves the strength of the cold pool compared to observations. Overall, ExpPFO_New, initialized from the more accurate analysis fields, produces better forecasts of reflectivity and hourly precipitation with smaller biases, especially at heavy precipitation thresholds.