skip to main content


Title: Magnetic-field-induced Wigner crystallization of charged interlayer excitons in van der Waals heterostructures
Abstract

Ever since its inception, coherent excited states of semiconductors have been the focus of semiconductor materials research to evolve into a vibrant field of low-dimensional solid-state physics. The field is gaining new momentum these days due to emerging transdimensional semiconductors such as van der Waals bound layers of transition metal dichalcogenides (TMDs) of controlled thickness. Here, we develop the theory of magnetic-field-induced Wigner crystallization for charged interlayer excitons (CIE) discovered recently in TMD heterobilayers. We derive the ratio of the potential interaction energy to the kinetic energy for the many-particle CIE system in the perpendicular magnetostatic field of an arbitrary strength and predict the crystallization effect in the strong field regime. We show that magnetic-field-induced Wigner crystallization and melting of CIEs can be observed in magneto-photoluminescence experiments with TMD bilayers of systematically varied electron-hole doping concentrations. Our results advance the capabilities of this new generation of transdimensional quantum materials.

 
more » « less
NSF-PAR ID:
10384452
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Physics
Volume:
5
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper we critically discuss several examples of two-dimensional electronic systems displaying interaction-driven metal-insulator transitions of the Mott (or Wigner–Mott) type, including dilute two-dimension electron gases (2DEG) in semiconductors, Mott organic materials, as well as the recently discovered transition-metal dichalcogenide (TMD) moiré bilayers. Remarkably similar behavior is found in all these systems, which is starting to paint a robust picture of Mott criticality. Most notable, on the metallic side a resistivity maximum is observed whose temperature scale vanishes at the transition. We compare the available experimental data on these systems to three existing theoretical scenarios: spinon theory, Dynamical Mean Field Theory (DMFT) and percolation theory. We show that the DMFT and percolation pictures for Mott criticality can be distinguished by studying the origins of the resistivity maxima using an analysis of the dielectric response. 
    more » « less
  2. Abstract

    The capacity to manipulate magnetization in 2D dilute magnetic semiconductors (2D‐DMSs) using light, specifically in magnetically doped transition metal dichalcogenide (TMD) monolayers (M‐dopedTX2, whereM = V, Fe, and Cr;T = W, Mo;X = S, Se, and Te), may lead to innovative applications in spintronics, spin‐caloritronics, valleytronics, and quantum computation. This Perspective paper explores the mediation of magnetization by light under ambient conditions in 2D‐TMD DMSs and heterostructures. By combining magneto‐LC resonance (MLCR) experiments with density functional theory (DFT) calculations, we show that the magnetization can be enhanced using light in V‐doped TMD monolayers (e.g., V‐WS2, V‐WSe2). This phenomenon is attributed to excess holes in the conduction and valence bands, and carriers trapped in magnetic doping states, mediating the magnetization of the semiconducting layer. In 2D‐TMD heterostructures (VSe2/WS2, VSe2/MoS2), the significance of proximity, charge‐transfer, and confinement effects in amplifying light‐mediated magnetism is demonstrated. We attributed this to photon absorption at the TMD layer that generates electron–hole pairs mediating the magnetization of the heterostructure. These findings will encourage further research in the field of 2D magnetism and establish a novel design of 2D‐TMDs and heterostructures with optically tunable magnetic functionalities, paving the way for next‐generation magneto‐optic nanodevices.

     
    more » « less
  3. Abstract

    The family of 2D semiconductors (2DSCs) has grown rapidly since the first isolation of graphene. The emergence of each 2DSC material brings considerable excitement for its unique electrical, optical, and mechanical properties, which are often highly distinct from their 3D counterparts. To date, studies of 2DSC are majorly focused on group IV (e.g., graphene, silicene), group V (e.g., phosphorene), or group VIB compounds (transition metal dichalcogenides, TMD), and have inspired considerable effort in searching for novel 2DSCs. Here, the first electrical characterization of group IV–V compounds is presented by investigating few‐layer GeAs field‐effect transistors. With back‐gate device geometry, p‐type behaviors are observed at room temperature. Importantly, the hole carrier mobility is found to approach 100 cm2V−1s−1with ON–OFF ratio over 105, comparable well with state‐of‐the‐art TMD devices. With the unique crystal structure the few‐layer GeAs show highly anisotropic optical and electronic properties (anisotropic mobility ratio of 4.8). Furthermore, GeAs based transistor shows prominent and rapid photoresponse to 1.6 µm radiation with a photoresponsivity of 6 A W−1and a rise and fall time of ≈3 ms. This study of group IV–V 2DSC materials greatly expands the 2D family, and can enable new opportunities in functional electronics and optoelectronics based on 2DSCs.

     
    more » « less
  4. Abstract

    The ability to control the density and spatial distribution of substitutional dopants in semiconductors is crucial for achieving desired physicochemical properties. Substitutional doping with adjustable doping levels has been previously demonstrated in 2D transition metal dichalcogenides (TMDs); however, the spatial control of dopant distribution remains an open field. In this work, edge termination is demonstrated as an important characteristic of 2D TMD monocrystals that affects the distribution of substitutional dopants. Particularly, in chemical vapor deposition (CVD)‐grown monolayer WS2, it is found that a higher density of transition metal dopants is always incorporated in sulfur‐terminated domains when compared to tungsten‐terminated domains. Two representative examples demonstrate this spatial distribution control, including hexagonal iron‐ and vanadium‐doped WS2monolayers. Density functional theory (DFT) calculations are further performed, indicating that the edge‐dependent dopant distribution is due to a strong binding of tungsten atoms at tungsten‐zigzag edges, resulting in the formation of open sites at sulfur‐zigzag edges that enable preferential dopant incorporation. Based on these results, it is envisioned that edge termination in crystalline TMD monolayers can be utilized as a novel and effective knob for engineering the spatial distribution of substitutional dopants, leading to in‐plane hetero‐/multi‐junctions that display fascinating electronic, optoelectronic, and magnetic properties.

     
    more » « less
  5. Colloidal suspensions are an ideal model for studying crystallization, nucleation, and glass transition mechanisms, due to the precise control of interparticle interactions by changing the shape, charge, or volume fraction of particles. However, these tuning parameters offer insufficient active control over interparticle interactions and reconfigurability of assembled structures. Dynamic control over the interparticle interactions can be obtained through the application of external magnetic fields that are contactless and chemically inert. In this work, we demonstrate the dual nature of magnetic nanoparticle dispersions to program interactions between suspended nonmagnetic microspheres using an external magnetic field. The nanoparticle dispersion simultaneously behaves as a continuous magnetic medium at the microscale and a discrete medium composed of individual particles at the nanoscale. This enables control over a depletion attractive potential and the introduction of a magnetic repulsive potential, allowing a reversible transition of colloidal structures within a rich phase diagram by applying an external magnetic field. Active control over competing interactions allows us to create a model system encompassing a range of states, from large fractal clusters to low-density Wigner glass states. Monitoring the dynamics of colloidal particles reveals dynamic heterogeneity and a marked slowdown associated with approaching the Wigner glass state. 
    more » « less