skip to main content


Title: Predicting and Evaluating Engineering Problem Solving (PEEPS): Instrument Development
CONTEXT - Judging the feasibility of solutions has become an increasingly important engineering skill as engineering problem solving has become more complex and technology-dependent. Engineering education must take care to foster engineering judgement in our students to produce robust problem solvers primed to critically evaluate and interpret output. Our work uses expertise development and dual-cognition processing theories (Dreyfus & Dreyfus, 1980; Smith, 2009; Simon, 1987) to frame such engineering judgement as engineering intuition or the ability to assess the outcome of an engineering solution and predict outcomes within an engineering scenario (Miskioğlu and Martin, 2019). PURPOSE OR GOAL - Our overarching goal is to create classroom interventions that explicitly recognize and enhance the development of engineering intuition. Accomplishing this goal requires a means of measuring engineering intuition before and after such interventions. This paper discusses our process to develop the Predicting and Evaluating Engineering Problem Solving (PEEPS) tool for measuring engineering intuition. APPROACH OR METHODOLOGY/METHODS - PEEPS is built directly on our prior qualitative work with practicing engineers, which revealed the construct of engineering intuition (Aaron et al., 2020). The emergent findings were combined with questions adapted from the Concept Assessment Tool for Statics (Steif & Dantzler, 2005) to create a preliminary survey assessing intuition. Additional items asked participants to assess their level of confidence in their answers. The survey was designed such that the statics problems could be switched out for other forms of engineering problems. Think-aloud sessions were used to check face validity and usability prior to full deployment in Spring 2021. ACTUAL OR ANTICIPATED OUTCOMES - This study details the process used to create PEEPS. Modifications were made following 19 think aloud sessions. The initial deployment in Spring 2021 resulted in 88 completed responses with responses primarily coming from white, male, aerospace engineering students who had previously performed well in their statics courses. CONCLUSIONS/RECOMMENDATIONS/SUMMARY - This work showcases a new survey designed to assess the engineering intuition of engineering students. Next steps include expanding the work to a more diverse sample of engineering students, further validity checks of the instrument, and pairing the instrument with newly created educational interventions designed to better foster engineering intuition development in students. KEYWORDS - engineering judgement, problem solving, survey development  more » « less
Award ID(s):
1927250
NSF-PAR ID:
10384567
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Research in Engineering Education Symposium & Australasian Association for Engineering Education Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. CONTEXT - Judging the feasibility of solutions has become an increasingly important engineering skill as engineering problem solving has become more complex and technology-dependent. Engineering education must take care to foster engineering judgement in our students to produce robust problem solvers primed to critically evaluate and interpret output. Our work uses expertise development and dual-cognition processing theories (Dreyfus & Dreyfus, 1980; Smith, 2009; Simon, 1987) to frame such engineering judgement as engineering intuition or the ability to assess the outcome of an engineering solution and predict outcomes within an engineering scenario (Miskioğlu and Martin, 2019). PURPOSE OR GOAL - Our overarching goal is to create classroom interventions that explicitly recognize and enhance the development of engineering intuition. Accomplishing this goal requires a means of measuring engineering intuition before and after such interventions. This paper discusses our process to develop the Predicting and Evaluating Engineering Problem Solving (PEEPS) tool for measuring engineering intuition. APPROACH OR METHODOLOGY/METHODS - PEEPS is built directly on our prior qualitative work with practicing engineers, which revealed the construct of engineering intuition (Aaron et al., 2020). The emergent findings were combined with questions adapted from the Concept Assessment Tool for Statics (Steif & Dantzler, 2005) to create a preliminary survey assessing intuition. Additional items asked participants to assess their level of confidence in their answers. The survey was designed such that the statics problems could be switched out for other forms of engineering problems. Think-aloud sessions were used to check face validity and usability prior to full deployment in Spring 2021. ACTUAL OR ANTICIPATED OUTCOMES - This study details the process used to create PEEPS. Modifications were made following 19 think aloud sessions. The initial deployment in Spring 2021 resulted in 88 completed responses with responses primarily coming from white, male, aerospace engineering students who had previously performed well in their statics courses. CONCLUSIONS/RECOMMENDATIONS/SUMMARY - This work showcases a new survey designed to assess the engineering intuition of engineering students. Next steps include expanding the work to a more diverse sample of engineering students, further validity checks of the instrument, and pairing the instrument with newly created educational interventions designed to better foster engineering intuition development in students. KEYWORDS - engineering judgement, problem solving, survey development 
    more » « less
  2. Engineering problem solving has become more complex and reliant on technology making engineering judgement an increasingly important and essential skill for engineers. Educators need to ensure that students do not become rote learners with little ability to critically analyze the result of solutions. This suggests that greater focus should be placed on developing engineering judgement, specifically engineering intuition, in our students who will be the future engineering workforce. This project is focused on the following four research questions: 1) What are practicing professional engineers’ perceptions of discipline specific intuition and its use in the workplace? 2) Where does intuition manifest in expert engineer decision-making and problem-solving processes? 3) How does the motivation and identity of practicing professional engineers relate to discipline-specific intuition? 4) What would an instrument designed to validly and reliably measure engineering intuition look like? Literature from the fields of nursing (Smith), management (Simon), and expertise development (Dreyfus) suggest intuition plays a role in both decision making and becoming an expert. This literature is used to support our definition of engineering intuition which is defined as the ability to: 1) assess the feasibility of a solution or response, and 2) predict outcomes and/or options within an engineering scenario (Authors). This paper serves as an update on the progress of our work to date. The first three research questions have been addressed through interviews with engineering practitioners at various stages in their careers, from early career to retired. Emergent findings have allowed us to construct a modified definition of engineering intuition, while also identifying related constructs. In Spring 2021, we created and tested an instrument to measure intuition. This instrument was re-deployed in Fall 2021. Preliminary results from the project’s qualitative and quantitative efforts will be presented. Our ultimate aim of this project is to inform the creation of classroom practices that improve students’ ability to develop, recognize, and improve their own engineering intuition. Select References: Authors (2020). Dreyfus, Stuart E., and Hubert L. Dreyfus. A five-stage model of the mental activities involved in directed skill acquisition. No. ORC-80-2. California Univ Berkeley Operations Research Center, 1980. Smith, Anita. "Exploring the legitimacy of intuition as a form of nursing knowledge." Nursing Standard (through 2013) 23.40 (2009): 35. Simon, Herbert A. "Making management decisions: The role of intuition and emotion." Academy of Management Perspectives 1.1 (1987): 57-64. 
    more » « less
  3. Engineering judgement has become an increasingly more important skill for engineers as engineering problem solving has grown more complex and reliant on technology. Judging the feasibility of solutions is required to solve 21st century problems, making this an essential 21st century engineering skill. Those tasked with preparing the future engineering workforce should avoid educating students to become rote learners who simply take output at face value without critical analysis. Engineering educators need to instead focus efforts toward developing students with improved engineering judgement, specifically engineering intuition. The project is focused on the following four research questions: 1) What are practicing professional engineers’ perceptions of discipline specific intuition and its use in the workplace? 2) Where does intuition manifest in expert engineer decision-making and problem-solving processes? 3) How does the motivation and identity of practicing professional engineers relate to discipline-specific intuition? 4) What would an instrument designed to validly and reliably measure engineering intuition look like? The idea or notion of engineering intuition is based in literature from nursing (Smith) and management (Simon) and links expert development to intuition (Dreyfus). This literature is used to support the hypothesis that engineering intuition is defined as the ability to: 1) assess whether engineering solutions are reasonable or ridiculous, and 2) predict outcomes and/or options within an engineering scenario. We seek to answer research questions 1-3 using interviews with engineering practitioners at various stages in their careers (early to retired). These interviews will allow us to construct a modified definition of engineering intuition and identify related constructs. These results will be leveraged to subsequently create an instrument to reliably measure intuition. The ultimate goal of this project is to use what is learned via research to create classroom practices that improve students’ ability to develop, recognize, and improve their own engineering intuition. Select References: Dreyfus, Stuart E., and Hubert L. Dreyfus. A five-stage model of the mental activities involved in directed skill acquisition. No. ORC-80-2. California Univ Berkeley Operations Research Center, 1980. Smith, Anita. "Exploring the legitimacy of intuition as a form of nursing knowledge." Nursing Standard (through 2013) 23.40 (2009): 35. Simon, Herbert A. "Making management decisions: The role of intuition and emotion." Academy of Management Perspectives 1.1 (1987): 57-64. 
    more » « less
  4. Engineering judgement has become an increasingly more important skill for engineers as engineering problem solving has grown more complex and reliant on technology. Judging the feasibility of solutions is required to solve 21st century problems, making this an essential 21st century engineering skill. Those tasked with preparing the future engineering workforce should avoid educating students to become rote learners who simply take output at face value without critical analysis. Engineering educators need to instead focus efforts toward developing students with improved engineering judgement, specifically engineering intuition. The project is focused on the following four research questions: 1) What are practicing professional engineers’ perceptions of discipline specific intuition and its use in the workplace? 2) Where does intuition manifest in expert engineer decision-making and problem-solving processes? 3) How does the motivation and identity of practicing professional engineers relate to discipline-specific intuition? 4) What would an instrument designed to validly and reliably measure engineering intuition look like? The idea or notion of engineering intuition is based in literature from nursing (Smith) and management (Simon) and links expert development to intuition (Dreyfus). This literature is used to support the hypothesis that engineering intuition is defined as the ability to: 1) assess whether engineering solutions are reasonable or ridiculous, and 2) predict outcomes and/or options within an engineering scenario. We seek to answer research questions 1-3 using interviews with engineering practitioners at various stages in their careers (early to retired). These interviews will allow ability to develop, recognize, and improve their own engineering intuition. Select References: Dreyfus, Stuart E., and Hubert L. Dreyfus. A five-stage model of the mental activities involved in directed skill acquisition. No. ORC-80-2. California Univ Berkeley Operations Research Center, 1980. Smith, Anita. "Exploring the legitimacy of intuition as a form of nursing knowledge." Nursing Standard (through 2013) 23.40 (2009): 35. Simon, Herbert A. "Making management decisions: The role of intuition and emotion." Academy of Management Perspectives 1.1 (1987): 57-64. 
    more » « less
  5. As the need for interdisciplinary collaboration increases, industry needs engineers who are not only affluent in technical engineering skills but also efficient in skills such as communication, problem-solving, engineering ethics, and business management. As a result, engineering programs are tasked with providing students with sufficient opportunities to develop non-technical professional skills to better prepare them for the workforce. Previous research has focused on exploring how and where students tend to develop profession skills and assessments have been established to measure the level of professional skills. However, without a means to measure whether students are getting sufficient opportunities for development, it is hard for educators and engineering programs to determine whether or where scaffolding are needed. We developed an instrument to assess undergraduate engineering students’ opportunities for professional skill development. To increase content validity, we conducted 20 think-aloud interviews with students from a large Midwestern university. The aim of this WIP is two-fold. We present the preliminary results of the think-aloud interview to determine what changes need to be made to existing items and what emerging themes appear regarding to participants’ professional skill development opportunities. After thematic analysis of the interview transcripts, we revised 10 items by simplifying the grammar or altering certain words that tend to confuse participants or carry negative connotations. We found that, compared to students who have only been involved in class projects, those with co-curricular experiences tend to report more opportunities in skills related to business management principles and problem-solving skills. Co-curricular activities were also the most referenced in building communication skills. Our next step will be piloting the instrument across multiple institutions and conducting validation analysis. 
    more » « less