skip to main content

This content will become publicly available on December 8, 2023

Title: Recent Advances in Electrolytes for Potassium‐Ion Batteries

Potassium‐ion batteries (KIBs) are considered as the potential energy storage devices due to the abundant reserves and low cost of potassium. In the past decade, research on KIBs has generally focused on electrode materials. However, since electrolytes also play a key role in determining the cell performance, this review summarizes recent advances in KIB electrolytes and design strategies. Specifically, the review includes five parts. First, the organic liquid electrolyte is the most widely used type for KIBs. Its two major components, salts and solvents, have a huge impact on the formation of the solid electrolyte interphase and the performance of KIBs. Changes in salts/solvents, the introduction of additives, and the concentration increase all have a positive effect on organic liquid electrolytes. Second, the design of water‐in‐salt electrolytes can effectively widen the narrow electrochemical stability window of aqueous electrolytes. Third, despite the appealing properties, the ionic liquid electrolytes have not been widely applied due to its high cost. Fourth, the solid‐state electrolytes have drawn much attention due to high safety, and current research has been working on improving their ionic conductivity at room temperature. Lastly, perspectives are provided to support the future development of suitable electrolytes for high‐performance KIBs.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Despite the high specific capacity and low redox potential of alkali metals, their practical application as anodes is still limited by the inherent dendrite‐growth problem. The fusible sodium–potassium (Na–K) liquid metal alloy is an alternative that detours this drawback, but the fundamental understanding of charge transport in this binary electroactive alloy anode remains elusive. Here, comprehensive characterization, accompanied with density function theory (DFT) calculations, jointly expound the Na–K anode‐based battery working mechanism. With the organic cathode sodium rhodizonate dibasic (SR) that has negligible selectivity toward cations, the charge carrier is screened by electrolytes due to the selective ionic pathways in the solid electrolyte interphase (SEI). Stable cycling for this Na–K/SR battery is achieved with capacity retention per cycle to be 99.88% as a sodium‐ion battery (SIB) and 99.70% as a potassium‐ion battery (PIB) for over 100 cycles. Benefitting from the flexibility of the liquid metal and the specially designed carbon nanofiber (CNF)/SR layer‐by‐layer cathode, a flexible dendrite‐free alkali‐ion battery is achieved with an ultrahigh areal capacity of 2.1 mAh cm−2. Computation‐guided materials selection, characterization‐supported mechanistic understanding, and self‐validating battery performance collectively promise the prospect of a high‐performance, dendrite‐free, and versatile organic‐based liquid metal battery.

    more » « less
  2. Electrochemical energy storage is a cost-effective, sustainable method for storing and delivering energy gener- ated from renewable resources. Among electrochemical energy storage devices, the lithium-ion battery (LIB) has dominated due to its high energy and power density. The success of LIBs has generated increased interest in sodium-ion battery (NaB) technology amid concerns of the sustainability and cost of lithium resources. In recent years, numerous studies have shown that sodium-ion solid-state electrolytes (NaSEs) have considerable potential to enable new cell chemistries that can deliver superior electrochemical performance to liquid-electrolyte-based NaBs. However, their commercial implementation is hindered by slow ionic transport at ambient and chemical/ mechanical incompatibility at interfaces. In this review, various NaSEs are first characterized based on individual crystal structures and ionic conduction mechanisms. Subsequently, selected methods of modifying interfaces in sodium solid-state batteries (NaSSBs) are covered, including anode wetting, ionic liquid (IL) addition, and composite polymer electrolytes (CPEs). Finally, examples are provided of how these techniques improve cycle life and rate performance of different cathode materials including sulfur, oxide, hexacyanoferrate, and phosphate-type. A focus on interfacial modification and optimization is crucial for realizing next-generation batteries. Thus, the novel methods reviewed here could pave the way toward a NaSSB capable of with- standing the high current and cycle life demands of future applications. 
    more » « less
  3. Abstract

    With the increasing use of Li batteries for storage, their safety issues and energy densities are attracting considerable attention. Recently, replacing liquid organic electrolytes with solid‐state electrolytes (SSE) has been hailed as the key to developing safe and high‐energy‐density Li batteries. In particular, Li1+xAlxTi2−x(PO4)3(LATP) has been identified as a very attractive SSE for Li batteries due to its excellent electrochemical stability, low production costs, and good chemical compatibility. However, interfacial reactions with electrodes and poor thermal stability at high temperatures severely restrict the practical use of LATP in solid‐state batteries (SSB). Herein, a systematic review of recent advances in LATP for SSBs is provided. This review starts with a brief introduction to the development history of LATP and then summarizes its structure, ion transport mechanism, and synthesis methods. Challenges (e.g., intrinsic brittleness, interfacial resistance, and compatibility) and corresponding solutions (ionic substitution, additives, protective layers, composite electrolytes, etc.) that are critical for practical applications are then discussed. Last, an outlook on the future research direction of LATP‐based SSB is provided.

    more » « less
  4. Abstract

    The remarkable surge in energy demand has compelled the quest for high‐energy‐density battery systems. The Li–O2battery (LOB) and Li–air battery (LAB), owing to their extremely high theoretical energy density, have attracted extensive research in the past two decades. The commercial development of LOB is hampered due to the numerous challenges its components present. Ionic liquids (ILs) are considered potential electrolyte solvents of LOBs and LABs due to their excellent electrochemical stability, thermal stability, non‐flammability, low flammability, and O2solubility. In addition to electrolyte solvents, ILs also have other applications in LOB and LAB systems. This review reports the progress of IL‐based LOBs and LABs over the years since treported for the first time in 2005. The impact of the physiochemical properties of ILs on the performance of LOB and LAB at various operating conditions is thoroughly discussed. The various methodologies are also summarized that are employed to tune ILs’ physiochemical properties to render them more favorable for rechargeable lithium batteries. Tunable properties of ILs create the possibility of designing cost‐effective batteries with excellent safety, high energy density and high power density, and long‐term stability.

    more » « less
  5. Abstract

    Ethylene and diethyl carbonates (EC : DEC) have been attractive solvents for Li‐ion electrolytes because these can exhibit a good ionic conductivity and stable electrochemical performance. However, in the contemporary K‐ion electrolytes, KPF6presents a limited solubility of ∼0.6 M in EC : DEC (volume ratio 1 : 1), which restricts its performance. Here, the molecular basis for these distinct solvation behaviors is clarified by combining experimental attenuated total reflectance‐infrared spectroscopy and electrochemical impedance spectroscopy measurements with molecular dynamics simulations, revealing the distinct roles of EC and DEC solvents on the solubility, ionic conductivity, and solvation shell structures of KPF6and LiPF6salts in EC : DEC mixtures. In turn, these insights have enabled the formulation of a new K‐ion electrolyte with EC : DEC volume ratio of 1.5 that exhibits significantly increased KPF6solubility (∼0.9 M) and ionic conductivity, reaching 13.99 mS cm−1at 25 °C.

    more » « less