skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Triarylboron‐Doped Acenethiophenes as Organic Sonosensitizers for Highly Efficient Sonodynamic Therapy with Low Phototoxicity
Abstract The development of efficient organic sonosensitizers is crucial for sonodynamic therapy (SDT) in the field of cancer treatment. Herein, a new strategy for the development of efficient organic sonosensitizers based on triarylboron‐doped acenethiophene scaffolds is presented. The attachment of boron to the linear acenethiophenes lowers the lowest unoccupied molecular orbital (LUMO) energy, resulting in redshifted absorptions and emissions. After encapsulation with the amphiphilic polymer DSPE‐mPEG2000, it is found that the nanostructured BAnTh‐NPs and BTeTh‐NPs (nanoparticles of BAnTh and BTeTh) shows efficient hydroxyl radical (OH) generation under ultrasound (US) irradiation in aqueous solution with almost no phototoxicity, which can overcome the shortcomings of O2‐dependent SDT and avoid the potential cutaneous phototoxicity issue. In vitro and in vivo therapeutic results validate that boron‐doped acenethiophenes as sonosensitizers enable high SDT efficiency with low phototoxicity and good biocompatibility, indicating that boron‐functionalization of acenes is a promising strategy toward organic sonosensitizers for SDT.  more » « less
Award ID(s):
1954122
PAR ID:
10384630
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
34
Issue:
49
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Although sonodynamic therapy (SDT) has shown promise for cancer treatment, the lack of efficient sonosensitizers (SSs) has limited the clinical application of SDT. Here, a new strategy is reported for designing efficient nano‐sonosensitizers based on 2D nanoscale metal–organic layers (MOLs). Composed of Hf‐oxo secondary building units (SBUs) and iridium‐based linkers, the MOL is anchored with 5,10,15,20‐tetra(p‐benzoato)porphyrin (TBP) sensitizers on the SBUs to afford TBP@MOL. TBP@MOL shows 14.1‐ and 7.4‐fold higher singlet oxygen (1O2) generation than free TBP ligands and Hf‐TBP, a 3D nanoscale metal–organic framework, respectively. The1O2generation of TBP@MOL is enhanced by isolating TBP SSs on the SBUs of the MOL, which prevents aggregation‐induced quenching of the excited sensitizers, and by triplet–triplet Dexter energy transfer between excited iridium‐based linkers and TBP SSs, which more efficiently harnesses broad‐spectrum sonoluminescence. Anchoring TBP on the MOL surface also enhances the energy transfer between the excited sensitizer and ground‐state triplet oxygen to increase1O2generation efficacy. In mouse models of colorectal and breast cancer, TBP@MOL demonstrates significantly higher SDT efficacy than Hf‐TBP and TBP. This work uncovers a new strategy to design effective nano‐sonosensitizers by facilitating energy transfer to efficiently capture broad‐spectrum sonoluminescence and enhance1O2generation. 
    more » « less
  2. Abstract Unveiling the underlying mechanisms of properties of functional materials, including the luminescence differences among similar pyrochlores A2B2O7, opens new gateways to select proper hosts for various optoelectronic applications by scientists and engineers. For example, although La2Zr2O7(LZO) and La2Hf2O7(LHO) pyrochlores have similar chemical compositional and crystallographic structural features, they demonstrate different luminescence properties both before and after doped with Eu3+ions. Based on our earlier work, LHO‐based nanophosphors display higher photo‐ and radioluminescence intensity, higher quantum efficiency, and longer excited state lifetime compared to LZO‐based nanophosphors. Moreover, under electronic O2−→Zr4+/Hf4+transition excitation at 306 nm, undoped LHO nanoparticles (NPs) have only violet blue emission, whereas LZO NPs show violet blue and red emissions. In this study, we have combined experimental and density functional theory (DFT) based theoretical calculation to explain the observed results. First, we calculated the density of state (DOS) based on DFT and studied the energetics of ionized oxygen vacancies in the band gaps of LZO and LHO theoretically, which explain their underlying luminescence difference. For Eu3+‐doped NPs, we performed emission intensity and lifetime calculations and found that the LHOE NPs have higher host to dopant energy transfer efficiency than the LZOE NPs (59.3% vs 24.6%), which accounts for the optical performance superiority of the former over the latter. Moreover, by corroborating our experimental data with the DFT calculations, we suggest that the Eu3+doping states in LHO present at exact energy position (both in majority and minority spin components) where oxygen defect states are located unlike those in LZO. Lastly, both the NPs show negligible photobleaching highlighting their potential for bioimaging applications. This current report provides a deeper understanding of the advantages of LHO over LZO as an advanced host for phosphors, scintillators, and fluoroimmunoassays. 
    more » « less
  3. Abstract The recognition of boron compounds is well developed as boronic acids but untapped as organotrifluoroborate anions (R−BF3). We are exploring the development of these and other designer anions as anion‐recognition motifs by considering them as substituted versions of the parent inorganic ion. To this end, we demonstrate strong and reliable binding of organic trifluoroborates, R−BF3, by cyanostar macrocycles that are size‐complementary to the inorganic BF4progenitors. We find that recognition is modulated by the substituent's sterics and that the affinities are retained using the common K+salts of R−BF3anions. 
    more » « less
  4. Abstract Molecular design of redox‐materials provides a promising technique for tuning physicochemical properties which are critical for selective separations and environmental remediation. Here, the structural tuning of redox‐copolymers, 4‐methacryloyloxy‐2,2,6,6‐tetramethylpiperidin‐1‐oxyl (TMA) and 4‐methacryloyloxy‐2,2,6,6‐tetramethylpiperidine (TMPMA), denoted as P(TMAx‐co‐TMPMA1−x), is investigated for the selective separation of anion contaminants ranging from perfluorinated substances to halogenated aromatic compounds. The amine functional groups provide high affinity toward anionic functionalities, while the redox‐active nitroxyl radical groups promote electrochemically‐controlled capture and release. Controlling the ratio of amines to nitroxyl radicals provides a pathway for tuning the redox‐activity, hydrophobicity, and binding affinity of the copolymer, to synergistically enhance adsorption and regeneration. P(TMAx‐co‐TMPMA1−x) removes a model perfluorinated compound (perfluorooctanoic acid (PFOA)) with a high uptake capacity (>1000 mg g−1) and separation factors (500 vs chloride), and demonstrates exceptional removal efficiencies in diverse per‐ and polyfluoroalkyl substances (PFAS) and halogenated aromatic compounds, in various water matrices. Integration with a boron‐doped diamond electrode allows for tandem separation and destruction of pollutants within the same electrochemical cell, enabling the energy integration of the separation step with the catalytic degradation step. The study demonstrates for the first time the tuning of redox‐copolymers for selective remediation of organic anions, and integration with an advanced electrochemical oxidation process for energy‐efficient water purification. 
    more » « less
  5. Abstract The high strength of boron carbide (B4C) is essential in its engineering applications such as wear‐resistance and body armors. Here, by employing density functional theory simulations, we demonstrated that the strength of B4C can be enhanced by doping lithium to boron‐rich boron carbide (B13C2) to form r‐LiB13C2. The bonding analysis on r‐LiB13C2indicates that the electron counting rule (or Wade's rule) is satisfied in r‐LiB13C2whose formula can be written as r‐Li+(B12)2‐(CB+C). The shear deformation on r‐LiB13C2indicates that its ideal shear strength is larger than that of B4C because of the existing of Li dopant. The failure process of r‐LiB13C2under ideal shear deformation initiates from breaking the icosahedral‐icosahedral B‐B bonds. Then these B atoms react with the middle B in the C‐B‐C chain, resulting in the disintegration of icosahedral clusters and brittle failure. More interesting, the nanotwinned r‐LiB13C2is even stronger than r‐LiB13C2because of the directional nature of covalent bonding at the twin boundaries. This suggests that the nanotwinned r‐LiB13C2has a significant enhanced strength compared to B4C. Our simulation results illustrate the deformation mechanism of Li‐doped boron carbide and its nanotwinned microstructure. We proposed to improve the strength of boron carbide by doping Li into B13C2and increasing its twin densities. 
    more » « less